

รายงานวิจัยฉบับสมบูรณ์

โครงการ การดูดซึมแคลเซียมของลำไส้เล็กที่ลดลงเมื่ออายุเพิ่มขึ้นจากผลของ ฮอร์โมนเอฟจีเอฟ-23 : หลักฐานที่แสดงว่าการดูดซึมแคลเซียมของลำไส้ลดลงใน ผู้สูงอายุ

The age-dependent decrease in the intestinal calcium absorption by FGF-23 : an evidence that explains low calcium absorption in the elderly

รศ. ดร.กรรณิการ์ วงศ์ดี

โครงการวิจัยประเภทงบประมาณเงินรายได้ จากเงินอุดหนุนรัฐบาล (งบประมาณแผ่นดิน) ประจำปีงบประมาณ พ.ศ. 2560 มหาวิทยาลัยบูรพา

รหัสโครงการ 555452 สัญญาเลขที่ 46/2560

รายงานวิจัยฉบับสมบูรณ์

โครงการ การดูดซึมแคลเซียมของลำไส้เล็กที่ลดลงเมื่ออายุเพิ่มขึ้นจากผลของ ฮอร์โมนเอฟจีเอฟ-23 : หลักฐานที่แสดงว่าการดูดซึมแคลเซียมของลำไส้ลดลงใน ผู้สูงอายุ

The age-dependent decrease in the intestinal calcium absorption by FGF-23 : an evidence that explains low calcium absorption in the elderly

โดย รศ. ดร.กรรณิการ์ วงศ์ดี คณะสหเวชศาสตร์ มหาวิทยาลัยบูรพา จังหวัดชลบุรี

กิตติกรรมประกาศ (ภาษาไทย)

งานวิจัยนี้ได้รับทุนสนับสนุนการวิจัยจากงบประมาณเงินรายได้จากเงินอุดหนุนรัฐบาล (งบประมาณ แผ่นดิน) ประจำปีงบประมาณ พ.ศ. 2560 มหาวิทยาลัยบูรพา ผ่านสำนักงานคณะกรรมการการวิจัยแห่งชาติ เลขที่สัญญา 46/2560

Acknowledgment

This work was financially supported by the Research Grant of Burapha University through National Research Council of Thailand (Grant no. 46/2560)

บทคัดย่อ

ประเทศไทยเป็นประเทศที่กำลังเข้าสู่สังคมผู้สูงอายุ กล่าวคือสังคมที่มีประชากรตั้งแต่อายุ 60 ปีขึ้นไป มากกว่าร้อยละ 10 ของประชากรทั้งหมด เนื่องจากอัตราการเจริญพันธุ์ลดลงและการมีอายุยืนยาวขึ้น ปัญหา สุขภาพที่พบควบคู่ไปกับผู้สูงอายุคือ โรคกระดูกพรุน ซึ่งเกิดจากการที่ร่างกายขาดความสมดุลทำให้มีการสลาย แคลเซียมออกจากกระดูกมากเกินไป กระดูกจึงขาดความแข็งแรง เสี่ยงต่อการหักได้ง่าย แม้ว่าโรคกระดูกพรุน จะมีหลายสาเหตุ เช่น การขาดฮอร์โมนจากรังไข่ การเป็นโรคเรื้อรังต่าง ๆ ก็เป็นสาเหตุที่เร่ง หรือทำให้กระดูก พรุนแย่ลงกว่าเดิม เช่นโรคเบาหวาน เป็นต้น โรคเบาหวานประเภทที่ 2 เป็นโรคที่พบได้บ่อยในผู้สูงอายุทั่วทั้ง โลก และมีแนวโน้มเพิ่มสูงขึ้น เคยมีการศึกษากันมาบ้างและพบว่าเบาหวานประเภทที่ 2 ทำให้กระดูกใน ภาพรวมความแข็งแรงของโครงร่างกระดูกลดลง อย่างไรก็ดี ยังไม่เคยมีการศึกษาติดตามการเปลี่ยนแปลงของ กระดูกตั้งแต่วัยผู้ใหญ่จนถึงเริ่มเข้าสู่วัยสูงอายุ และการแสดงออกของยีน FGF-23 ในลำไส้ในช่วงเวลาดังกล่าว ผู้วิจัยจึงมีเป้าหมายที่จะศึกษาการเปลี่ยนแปลงของกระดูกตามอายุและภายใต้ภาวะที่เป็นโรคเบาหวาน ประเภทที่ 2 ในการทดลอง ผู้วิจัยใช้หนู Wistar เพศเมีย และหนูเบาหวานประเภทที่ 2 เลี้ยงให้มีอายุ 7 เดือน และ 13 เดือน เพื่อเป็นตัวแทนของวัยผู้ใหญ่และวัยสูงอายุ ลำไส้นำไปใช้ศึกษาการแสดงออกของยีน FGF-23 ้ผลการศึกษาพบว่า การการเป็นโรคเบาหวานประเภทที่ 2 แม้จะทำให้เปลือกกระดูกดูมีความหนาหรือมีพื้นที่ มากขึ้น แต่โครงสร้างของใยกระดูกภายในนั้นกลับแย่ลง การเปลี่ยนแปลงทางโครงสร้างของกระดูกที่เกิดขึ้นใน หนูเบาหวาน เป็นกลไกหนึ่งที่ช่วยชดเชยความแข็งแรงของกระดูกอันเนื่องมาจากการสูญเสียมวลกระดูกใน โรคเบาหวานชนิดที่ 2 นอกจากนี้ยังพบว่า อายุที่เพิ่มขึ้นส่งผลให้กลไกการชดเชยความแข็งแรงของกระดูกใน หนูจีเคลดลง เมื่อเปรียบเทียบระหว่างหนูจีเคที่อายุ 7 เดือนและ 13 เดือน ผลการศึกษาดังกล่าวชี้ว่า โรคเบาหวานส่งผลเสียต่อกระดูกทั้งในแง่ของการเจริญเติบโตของกระดูก ความหนาแน่นของมวลกระดูก และ โครงสร้างของกระดูก ซึ่งอายุที่เพิ่มขึ้นยิ่งส่งผลเสียต่อกระดูกมากขึ้นในโรคเบาหวาน จึงสรุปได้ว่าโรคเบาหวาน เป็นปัจจัยหนึ่งที่เร่งให้การเสื่อมของโครงสร้างกระดูกนั้นแย่ลงเร็วกว่าเดิม การป้องกันไม่ให้เป็นโรคเบาหวาน จึงเป็นทางที่ดีที่สุดในเวลานี้ ที่จะช่วยชะลอการเกิดกระดูกพรุน

สารบัญเรื่อง

	หน้า
กิตติกรรมประกาศ	ก
บทคัดย่อ	າ
สารบัญเรื่อง	ମ
สารบัญตาราง	খ
สารบัญภาพ	จ

สารบัญตาราง

ตารางที่		หน้า
1	Time-line การขออนุมัติใช้สัตว์ทดลอง	12

สารบัญภาพ

ภาพที่		หน้า
1	ฮอร์โมนที่กระตุ้นและยับยั้งการดูดซึมแคลเซียมที่ลำไส้เล็ก	2
2	Interrelation among FGF-23, PTH, 1,25(OH) $_{\rm 2}{\rm D}_{\rm 3}$ and Klotho	5
3	แผนการทดลอง	8
4	The Ussing chamber used in this experiment. The setup consists of	11
	two parts, i.e., the tissue chambers filled with bathing solution, and	
	the electrical circuit for measurement of epithelial electrical	
	parameters, including transepithelial potential difference (V $_{\rm T}$ or PD),	
	short-circuit current (Isc) and transepithelial resistance (TER).	
5	แสดงการเปลี่ยนแปลงสมดุลแคลเซียมอิสระในเลือดในหนูอายุ 7 และ 13 เดือน	13
6	แสดงโครงสร้างของกระดูกที่ตรวจวัดด้วยเทคนิคเอกซเรย์คอมพิวเตอร์สามมิติ	15
	ระดับไมโครเมตร ในหนูอายุ 7 เดือนและ 13 เดือน	
7	แสดงคุณสมบัติเชิงกลของกระดูกจากการทดสอบการดัดงอแบบ 3 จุด ในหนู	16
	อายุ 7 เดือนและ 13 เดือน	
8	การดูดซึมแคลเซียมที่ลำไส้ส่วน proximal และ distal duodenum ด้วยวิธี	17
	Ussing chamber	
9	ผล Real-time PCR แสดงการแสดงออกของยีน GAPDH และ FGF-23 ใน	17
	เนื้อเยื่อลำไส้ส่วน duodenum ของหนูแรท	

เลขที่สัญญา 46/2560

(1) บทน้ำ (Introduction)

1.1 ความสำคัญและที่มาของปัญหา

ประเทศไทยเป็นประเทศที่กำลังเข้าสู่สังคมผู้สูงอายุ กล่าวคือสังคมที่มีประชากรตั้งแต่อายุ 60 ปี ขึ้นไป มากกว่าร้อยละ 10 ของประชากรทั้งหมด เนื่องจากอัตราการเจริญพันธุ์ลดลงและการมีอายุยืนยาวขึ้น [มูลนิธิสถาบันวิจัยและพัฒนาผู้สูงอายุไทย 2558] จากรายงานสถานการณผูสูงอายุไทย ป 2557 ของมูลนิธิ สถาบันวิจัยและพัฒนาผูสูงอายุไทย พบวาป 2557 มีจำนวนประชากรสูงวัยที่มีอายุ 60 ปขึ้นไป มากถึง 9.9 ล้านคน จากประชากรไทยทั้งหมด 68 ลานคน หรือคิดเปนรอยละ 15 และการคาดการณวาประเทศไทย จะเข าสูสังคมผู้สูงอายุอยางสมบูรณ์ (สังคมที่มีประชากรอายุ 60 ปขึ้นไป มากกว่าร้อยละ 20 ของประชากรทั้งหมด) ในป 2564 [มูลนิธิสถาบันวิจัยและพัฒนาผู้สูงอายุไทย 2558]

ปัญหาสุขภาพที่พบควบคู่ไปกับผู้สูงอายุคือ โรคกระดูกพรุน ซึ่งเกิดจากการที่ร่างกายขาดความ สมดุลในการสร้างและสลายกระดูก ทำให้มีการสลายแคลเซียมออกจากกระดูกมากเกินไป กระดูกจึงขาดความ แข็งแรง เสี่ยงต่อการหักได้ง่าย แม้ว่าโรคกระดูกพรุนจะมีหลายสาเหตุ เช่น การขาดฮอร์โมนจากรังไข่ และการ ตายของเซลล์สร้างกระดูก โดยการขาดแคลเซียมหรือรับประทานแคลเซียมน้อยไม่ใช่ปัจจัยหลักเพียงปัจจัย เดียว แต่ผู้สูงอายุก็ต้องการแคลเซียมเพื่อไปใช้ในกระบวนการซ่อมแซมกระดูก ทว่าปัญหาสำคัญก็คือ การดูด ซึมแคลเซียมในผู้สูงอายุกต่ำลงอย่างมาก โดยจะเริ่มราวอายุ 65–70 ปี [Gallagher 2013; Bullamore et al. 1970] ซึ่งนอกจากมาจากอายุที่มากขึ้นแล้ว อาจมาจากปัญหาอื่น ๆ ร่วมด้วยเช่น โรคเบาหวาน เป็นต้น ทำให้เป็นปัญหาอย่างยิ่งในการให้แคลเซียมเสริมแก่ผู้สูงอายุ เนื่องจากแคลเซียมที่ให้เสริมจะไม่สามารถดูดซึม ได้อย่างเต็มที่ การดูดซึมแคลเซียมที่ลดลงนี้อาจเกิดจากหลายสาเหตุด้วยกัน เช่น การลดจำนวนของตัวรับ วิตามินดี (เป็นวิตามินที่กระตุ้นการดูดซึมแคลเซียมที่ลำไส้) เซลล์เยื่อบุลำไส้มีการต้านต่อวิตามินดี หรือการ ทำงานของโปรตีนขนส่งแคลเซียมในลำไส้ทำงานลดลง เป็นต้น [Gallagher 2013; Horst et al. 1990; Francis et al. 1984] อย่างไรก็ตาม เซลล์เยื่อบุลำไส้เองอาจมีกลไกอื่น ๆ ที่จำกัดการดูดซึมแคลเซียมได้ด้วย ผู้วิจัยจึงมีเป้าหมายที่จะค้นคว้าหาปัจจัยที่จำกัดการดูดซึมแคลเซียมในลำไส้ตามวัยที่เปลี่ยนแปลงไป

ตั้งแต่ปี ค.ศ. 2000 เป็นต้นมา ฮอร์โมนที่ชื่อว่า fibroblast growth factor-23 (FGF-23) เป็น ฮอร์โมนที่มีการศึกษาเพิ่มขึ้นอย่างมากในแง่ของการมีบทบาทควบคุมสมดุลแคลเซียมและฟอสเฟตในร่างกาย โดยทั่วไปแล้ว FGF-23 เป็นที่รู้จักกันว่าเป็นฮอร์โมนที่สร้างจากกระดูก ทำหน้าที่ควบคุมสมดุลฟอสเฟต โดย เร่งการขับฟอสเฟตทิ้งออกทางไต แต่ต่อมาพบว่า FGF-23 นั้นสามารถสร้างที่เซลล์เยื่อบุลำไส้ได้ด้วย [Wongdee et al. 2016] และมีบทบาทควบคุมการดูดแคลเซียมได้โดยตรงที่ลำไส้ โดยปกติแล้วลำไส้ได้ด้วย [Mongdee et al. 2016] และมีบทบาทควบคุมการดูดแคลเซียมได้โดยตรงที่ลำไส้ โดยปกติแล้วลำไส้เล็กจะ ดูดซึมแคลเซียมมากขึ้นเมื่อถูกกระตุ้นด้วยฮอร์โมนวิตามินดี แต่การศึกษาของ รศ. ดร.กรรณิการ์ และคณะ [Khuituan et al. 2012] พบว่า FGF-23 สามารถยับยั้งฤทธิ์ของวิตามินดีที่กระตุ้นการดูดซึมแคลเซียมที่ลำไส้ หนูเม้าส์ได้ นอกจากนี้ รศ. ดร.กรรณิการ์ และคณะยังพบว่าในภาวะอื่น FGF-23 ก็ให้ผลเช่นเดียวกัน เช่น ภาวะที่ลำไส้ถูกกระตุ้นด้วยฮอร์โมนโพรแลคติน ซึ่งเป็นฮอร์โมนที่มีระดับสูงในระยะให้นมและสามารถเพิ่มการ ดูดซึมแคลเซียมได้ ก็ถูกยับยั้งเมื่อได้รับ FGF-23 [Wongdee et al. 2016] (รูปที่ 1) นั่นคือภาวะที่ลำไส้มี แคลเซียมปริมาณมาก ร่างกายจะสร้าง FGF-23 ออกมามากตามไปด้วย เพื่อจำกัดการนำเข้าแคลเซียมสู่ กระแสเลือด ผู้วิจัยจึงคาดว่าการที่ลำไส้ของผู้สูงอายุดูดซึมแคลเซียมลดลง อาจเป็นเพราะ FGF-23 มีการ แสดงออกหรือการทำงานมากขึ้นตามอายุ

รูปที่ 1 ฮอร์โมนที่กระตุ้นและยับยั้งการดูดซึมแคลเซียมที่ลำไส้เล็ก เครื่องหมาย ⊕ หมายถึง กระตุ้น; เครื่องหมาย ⊖ หมายถึง ยับยั้ง (Ca, calcium; FGF-23, fibroblast growth factor-23; Vit. D, vitamin D)

โรคเบาหวานชนิดที่ 2 เป็นโรคที่พบได้บ่อยในผู้สูงอายุทั่วโลกและมีจำนวนเพิ่มสูงขึ้น ซึ่งการเป็น โรคเบาหวานในผู้สูงอายุนั้น อาจยิ่งทำให้การดูดซึมแคลเซียม รวมไปถึงโครงสร้างของกระดูกนั้นแย่ลงเร็วกว่า ผู้สูงอายุทั่วไป ดังนั้นนอกจากการดูดซึมแคลเซียมที่ลำไส้แล้ว ผู้วิจัยยังสนใจศึกษาโครงสร้างของกระดูกที่ป่วย ด้วยโรคเบาหวานประเภทที่ 2 ร่วมกับการสูงอายุ ความเข้าใจบทบาทของ FGF-23 ในการควบคุมการดูด ซึมแคลเซียมของลำไส้ในช่วงอายุที่มากขึ้นโดยที่มี/ไม่มีโรคเบาหวานร่วมด้วยนั้น ไม่เพียงทำให้ทราบ ปัจจัยที่จำกัดการดูดซึมแคลเซียมที่ลำไส้เก่านั้น ความรู้ที่ได้จากโครงการนี้ยังสามารถเชื่อมโยงไปสู่การ นำไปใช้ได้โดยตรง กล่าวคือ หาก FGF-23 เป็นตัวยับยั้งการดูดซึมแคลเซียมที่ลำไส้ตามอายุที่เพิ่มขึ้นจริง ความรู้นี้จะนำไปสู่การปรับเปลี่ยนวิธีการให้แคลเซียมเสริมในผู้สูงอายุได้โดยตรง โดยไม่ต้องใช้ยาใด ๆ เพิ่มเติม เพียงแต่ปรับวิธีการให้แคลเซียมเสริมให้สอดคล้องกับธรรมชาติการทำงานของฮอร์โมนในร่างกาย โดยอาจแบ่งให้แคลเซียมเป็นหลายครั้งต่อวัน (เช่น 2 หรือ 3 ครั้งต่อวัน แทนที่จะรับประทานแคลเซียม ปริมาณมาก ๆ เพียงครั้งเดียวต่อวัน) เพื่อป้องกันไม่ให้ลำไส้สร้าง FGF-23 ออกมามากเกินไป ซึ่งการปรับ วิธีการดังกล่าวจะทำให้การดูดซึมแคลเซียมเสริมในผู้สูงอายุมีประสิทธิภาพสูงและทำให้ผู้สูงอายุมีสุขภาพ กระดูกที่ดีตามมา

1.2. วัตถุประสงค์ของโครงการวิจัย

- 1.2.1 เพื่อศึกษาผลของอายุ โรคเบาหวาน อายุและโรคเบาหวานต่อการเปลี่ยนแปลงสมดุล แคลเซียมในร่างกาย
- 1.2.2 เพื่อศึกษาผลของอายุ โรคเบาหวาน อายุและโรคเบาหวานต่อการเปลี่ยนแปลงทางโครงสร้าง ของกระดูก
- 1.2.2 เพื่อศึกษาระดับการแสดงออกของยีน FGF-23 และยีนตัวรับที่เกี่ยวข้องในเซลล์เยื่อบุลำไส้ใน อายุที่แตกต่างกัน

1.3 ขอบเขตของโครงการวิจัย

การศึกษาจะทำในสัตว์ทดลอง (in vivo) โดยใช้หนูเพศเมียสายพันธุ์ Wistar rat และหนูเหวาน ประเภทที่ 2 สายพันธุ์ Goto-Kakizaki (Goto-Kakizaki) ที่มีอายุ 7 และ 13 เดือน เป็น model เพื่อ เปรียบเทียบผลทางด้านอายุ และโรคเบาหวานของสัตว์ทดลองต่อการเปลี่ยนแปลงของโครงสร้างกระดูก รวมถึงการแสดงออกของ FGF-23 ในลำไส้ส่วนดูโอดีนัมด้วยเทคนิค Real-time PCR ส่วนการศึกษาผลของ FGF-23 ต่อการดูดซึมแคลเซียมที่ลำไส้ ศึกษาในลำไส้ส่วนดูโอดีนัมด้วยเทคนิค Ussing chamber

1.4 ทฤษฎี สมมุติฐาน (ถ้ามี) และกรอบแนวคิดของโครงการวิจัย

โรคกระดูกพรุนเป็นปัญหาสุขภาพที่พบได้บ่อยในผู้สูงอายุ ซึ่งเกิดจากการที่ร่างกายมีการสลาย แคลเซียมออกจากกระดูกมากเกินไป กระดูกจึงขาดความแข็งแรง เสี่ยงต่อการหักได้ง่าย ผู้สูงอายุจึงต้องการ แคลเซียมเพื่อไปชดเชยในกระบวนการซ่อมแซมกระดูก แต่ปัญหาสำคัญก็คือ การดูดซึมแคลเซียมในผู้สูงอายุ ลดต่ำลงอย่างมาก ทำให้เป็นปัญหาในการให้แคลเซียมเสริมแก่ผู้สูงอายุ เนื่องจากแคลเซียมที่ให้เสริมจะไม่ สามารถดูดซึมได้อย่างเต็มที่ ซึ่งมาจากหลายสาเหตุ เช่น ภาวะดื้อต่อวิตามินดี เป็นต้น เป็นที่น่าสนใจว่า FGF-23 ซึ่งเป็นฮอร์โมนที่สร้างจากกระดูกและมีการแสดงออกที่ลำไส้ สามารถยับยั้งการดูดซึมแคลเซียมที่ลำไส้ได้ เองอีกด้วย ผู้วิจัยจึงมีสมมุติฐานว่า การที่ลำไส้ของผู้สูงอายุดูดซึมแคลเซียมลดลง อาจเป็นเพราะ FGF-23 มีการแสดงออกหรือการทำงานมากขึ้นตามอายุ

ความรู้ที่ได้จากโครงการวิจัยนี้จะเชื่อมโยงไปสู่การนำไปใช้ได้โดยตรง กล่าวคือ หาก FGF-23 เป็น ตัวยับยั้งการดูดซึมแคลเซียมที่ลำไส้ตามอายุที่เพิ่มขึ้นจริง ความรู้นี้จะนำไปสู่การปรับเปลี่ยนวิธีการให้ แคลเซียมเสริมในผู้สูงอายุได้โดยตรง โดยไม่ต้องใช้ยาใด ๆ เพิ่มเติม เพียงแต่ปรับวิธีการให้แคลเซียมเสริมให้ สอดคล้องกับธรรมชาติการทำงานของฮอร์โมนในร่างกาย โดยอาจแบ่งให้แคลเซียมเป็นหลายครั้งต่อวัน เพื่อ ป้องกันไม่ให้ลำไส้สร้าง FGF-23 ออกมามากเกินไป ซึ่งการปรับวิธีการดังกล่าวจะทำให้การดูดซึมแคลเซียม เสริมในผู้สูงอายุมีประสิทธิภาพสูงและทำให้ผู้สูงอายุมีสุขภาพกระดูกที่ดีตามมา

1.5 การทบทวนวรรณกรรม/สารสนเทศ (information) ที่เกี่ยวข้อง

1.5.1 Vitamin D and intestinal calcium absorption

In normal condition, absorption of dietary Ca^{2+} across intestinal epithelium via transcellular mechanisms occurs predominantly in the duodenum. Transcellular transport is generally occurs via a three-step process consisting of passive entry of Ca^{2+} across the apical membrane, the transcellular movement of Ca^{2+} from the point of entry to the basolateral membrane (BLM) and its extrusion from the BLM into the circulatory system. Regulation of epithelial Ca^{2+} transport by $1,25(OH)_2D_3$ is a commonly accepted. The regulation through genomic actions involving the classical vitamin D receptor (VDR) is widely recognized, the non-genomic regulation through a separate membrane receptor, which we have identified as $1,25D_3$ -MARRS (membrane-associated, rapid response, steroid hormone-binding) receptor. For classical action through VDR, calcium is transported across the intestinal epithelium via paracellular and transcellular pathways. However, the transcellular pathway becomes more significant during low calcium intake or increased calcium demand, e.g., in pregnancy and lactation [Charoenphandhu et al. 2009; Wasserman 2004; Zhu et al. 1998].

Aging has been associated with lower intestinal Ca²⁺ absorption that starts ~65–70 years [Gallagher 2013; Nordin 2004]. As a result, it leads to negative calcium balance, secondary hyperparathyroidism, increased bone loss, and osteoporosis. Although several factors affect intestinal calcium absorption, e.g., amount of food intake, protein intake, the main regulator is 1,25(OH)₂D₃ (an active form of vitamin D) acting through vitamin D receptor (VDR). The reduction of calcium absorption might be resulted from several causes, i.e., decreased renal production of 1,25(OH)₂D₃ by the aging kidney, decreased VDR, and decreased skin production of vitamin D [Gallagher 2013]. Human study the effects of age on serum 1,25(OH)₂D₃ in normal women revealed the advanced age the lower serum 1,25(OH)₂D₃ level [Kinyamu et al. 1997]. Recent post hoc analysis in post-menopausal women had identified age, 1,25(OH)₂D₃, and dietary calcium and fat were associated with Ca²⁺ absorption, whereas serum 25(OH)D levels were not [Ramsubeik et al. 2014], suggesting that beyond the traditional focus on Ca²⁺ and 1,25(OH)₂D₃, some other factors also influence intestinal Ca²⁺ absorption. We postulate the intestine-produced local hormone FGF-23 might play role in this milieu.

1.5.2 Fibroblast growth factor-23 (FGF-23)

FGF-23 is a 32-kDa with an N-terminal region, containing the FGF-homology domain and a novel 71–amino acid C-terminus. FGF23 function is associated with angiogenesis, wound healing and embryonic development. Itoh and Ornitz [2004] categorized 22 FGFs into three subfamilies, i.e.,

- 1) Canonical FGFs (FGF-1 to FGF-10, FGF-16 to FGF-18, FGF-20 and FGF-22) are secreted proteins that bind and activate FGF receptors (FGFRs) in a paracrine manner.
- 2) Hormone-like FGFs [FGF-15 (in mice)/FGF-19 (in human), FGF-21 and FGF-23] act on target cells elsewhere in the body in an endocrine manner.
- 3) Intracellular FGFs (FGF-11 to FGF-14) act in FGFR-independent manner.

FGF-23 is secreted from bone cells called osteocytes and osteoblasts [Liu et al. 2003; Mirams et al. 2004; Yamashita et al. 2000]. Normally, the production of FGF-23 by osteoblasts and osteocytes is quite small except in hypophosphatemic rickets/osteomalacia and chronic kidney disease patients [Liu et al., 2007; Pereira et al., 2009]. In normal conditions, intact FGF-23 concentration in human is ~10-30 pg/mL, whereas, the level in mouse is higher, about 110 pg/mL [Imel et al. 2006; Stubbs et al. 2012; Wolf 2012].

Fig. 2 Interrelation among FGF-23, PTH, $1,25(OH)_2D_3$ and Klotho [Quarles 2008].

Once released, FGF-23 targets the kidney, leading to reductions in serum phosphate and 1,25(OH)₂D levels by stimulating the fractional excretion of phosphate and reducing 1 α hydroxylase activity. The receptor for FGF-23 in the kidney is a Klotho–FGF receptor 1 (FGFR1) complex located in the distal tubule. FGF-23 also decreases the kidney expression of Klotho, which diminishes renal tubular calcium reabsorption via its interactions with transient receptor potential cation channel, subfamily V, member 5 (TRPV5). FGF-23 may also directly target the parathyroid gland (PTG) to reduce PTH secretion. FGF-23 is the principal phosphaturic hormone and may function to counter the hypercalcemic and hyperphosphatemic effects of excess $1,25(OH)_2D_3$ through reductions in PTH and elevations in FGF-23 levels (Fig. 2) [Quarles 2008; Shimada et al. 2004].

1.5.3 FGF-23 and intestinal calcium transport

The intestinal absorption of calcium is regulated by several factors, including PTH and $1,25(OH)_2D_3$. Previously, the major functions of FGF-23 on ion transporters are well established in the kidney, but its functions in the intestine are not well understood. FGF-23 can regulate Pi and $1,25(OH)_2D_3$ homeostasis by downregulation of renal Pi transporters (NaPi-IIa and NaPi-IIc), thereby reducing renal Pi reabsorption [Segawa et al. 2002; Shimada et al. 2005]. It also suppresses the expression of $1\alpha(OH)$ ase and enhances the expression of 24(OH)ase in the kidney to decrease circulating levels of $1,25(OH)_2D_3$.

Normally, 1,25(OH)₂D₃ enhances intestinal calcium and Pi absorption by stimulating the expression of intestinal calcium and Pi transporters, e.g., transient receptor potential vanilloid family calcium channel (TRPV)-5, TRPV6, plasma membrane Ca^{2+} -ATPase isoform 1b (PMCA_{1b}), calbindin-D_{9k} and NaPi-IIb (transporter located on the apical membrane of enterocytes, responsible for Pi absorption). Therefore in normal conditions, FGF-23 indirectly affects intestinal Ca^{2+} absorption in an 1,25(OH)₂D₃-dependent manner. Several investigations showed a link between FGF-23 and calcium homeostasis. For instance, plasma calcium levels could regulate FGF-23 production [Kobayashi et al. 2006; Shimada et al. 2004], and FGF-23, their receptors and co-receptor are also expressed in the small intestine [Hagiwara et al. 2009; Khuituan et al. 2012; Wang and Sun 2009]. Recently, Khuituan and colleagues [2012] demonstrated the role of FGF-23 on mouse duodenal calcium absorption and found that FGF-23 could directly abolish 1,25(OH)₂D₃-induced duodenal calcium absorption, therefore, FGF-23 is supposed to be a novel calcium regulating hormone that acted directly on the small intestine.

As mention earlier, to elicit an action, FGF-23 binds to coreceptor Klotho and FGFR1 complex. Klotho is originally identified as a putative aging-suppressor gene [Xu and Sun 2015]. Knockout of α -Klotho in mice accelerated premature aging including soft tissue calcification, arteriosclerosis, skin atrophy, gonadal dysplasia, infertility, hypoglycemia, severe hyperphosphatemia, osteoporosis, emphysema, and an overall shorter life span [Kuro-o et al. 1997]. On the other hand, over expression of α -Klotho slowdowns aging as well as

หน้า 6

extended the life span by 20–30% [Kuro-o et al. 1997; Kurosu et al. 2005; Masuda et al. 2005]. Full length of Klotho also serves as a coreceptor to enhance FGF-23 signaling. Therefore, it is hypothesized that the reduction of intestinal calcium absorption may be contributed by FGF-23 and Klotho in age-dependent manner.

(2) วิธีดำเนินการวิจัย ผลการวิจัยและอภิปรายผลการวิจัย

2.1 แผนการศึกษา

เดิมที แผนการวิจัยได้แสดงตามรูปที่ 3 การศึกษานี้ใช้หนูเพศเมีย สายพันธุ์ Wistar โดยแบ่งออกเป็น สองกลุ่มอายุ คืออายุ 2 เดือน และ 7 เดือน โดยในแต่ละช่วงอายุ แบ่งกลุ่มการทดลองออกเป็น 3 กลุ่ม คือ

- กลุ่ม 1 Control (จำนวน 5 n) : หนูได้รับการฉีด vehicle ของ 1,25(OH)₂D₃ กล่าวคือฉีด 3 mg/kg 9:1 propylene glycol-ethanol เข้าใต้ผิวหนัง
- กลุ่ม 2 Vitamin D treatment (จำนวน 5 n) : หนูจะถูกฉีด 1 µg/mL 1,25(OH)₂D₃ เข้าใต้ ผิวหนังที่ 72, 48 และ 24 ชั่วโมงก่อนการวัดการดูดซึมแคลเซียม โดยอ้างอิงตามวิธีการของ Khuituan และคณะ [2012]
- กลุ่ม 3 Vitamin D treatment + FGF-23 antibody (จำนวน 5 n) : หนูจะถูกฉีด 1 µg/mL 1,25(OH)₂D₃ ที่ 72, 48 และ 24 ชั่วโมงก่อนการวัดการดูดซึมแคลเซียม (ใช้วิธีการเดียวกับกลุ่ม ที่ 2) แต่แตกต่างตรงที่ มีการใส่ FGF-23 antibody ใน Ussing chamber ในช่วงที่นำลำไส้มา วัดการดูดซึมแคลเซียม ซึ่ง FGF-23 antibody ที่ใส่ลงไปในระหว่างทำการทดลอง ใช้เพื่อ ทดสอบว่าการขนส่งแคลเซียมในลำไส้ถูกยับยั้งด้วย FGF-23 หรือไม่

รูปที่ 3 แผนการทดลอง

เมื่อหนูครบอายุจึงสลบสัตว์ทดลอง เก็บเลือดแล้วนำไปวัดระดับของ FGF-23 จากนั้นเก็บลำไส้ส่วนดูโอ ดีนัม ลำไส้ที่เก็บมาแบ่งออกเป็นสองส่วน เพื่อนำไปศึกษาการแสดงออกของยีนและการดูดซึมแคลเซียม โดยมี รายละเอียดดังนี้

 การศึกษาการแสดงออกของยืนที่เกี่ยวกับ FGF-23 และการขนส่งแคลเซียม ลำไส้ส่วนดูโอดีนัม จะถูกนำไปสกัด total RNA และนำไปศึกษาการแสดงออกของยืนกลุ่มต่อไปนี้

FGF-23-related genes	Calcium transport-related genes
• FGF-23	• TRPV6
Klotho	• Ca _v 1.3
• FGFR isoform 1–4	 Calbindin-D_{9k}
	• PMCA _{1b}
	NCX1
	• Claudin-12, -15
	• ZO-1

2. การศึกษาผลของ FGF-23 ต่อการขนส่งแคลเซียมในลำไส้ส่วนดูโอดีนัมตามช่วงอายุ

ลำไส้ส่วนดูโอดีนัมจะถูกนำไปศึกษาการดูดซึมแคลเซียม (Ca flux) ทั้งแบบ transcellular และ paracellular pathway ด้วยเทคนิค Ussing ในแต่ละช่วงอายุ โดยวัดค่าของ transepithelial resistance (TER), short-circuit current (Isc), transepithelial potential difference (PD) ไปด้วย

2.2 Experiment procedure

2.2.1 Animals

One-month-old female GK rats and age-matched wild-type (WT) Wistar rats were used, while in the insulin treatment experiment, 6-week-old female GK and WT rats were used. All rats were purchased from the Center for Laboratory Experimental Animals (CLEA), Japan. They were housed in stainless steel cages under 12:12 h light–dark cycle. Room temperature was ~22–24 °C with relative humidity of ~50–60%. They were fed standard chow (Perfect Companion Co., Ltd., Thailand) and reverse osmosis water ad libitum. All animals were cared for in accordance with the Mahidol University policy for the care and use of animals for scientific purposes. This study has been approved by the ethics committee of the National Laboratory Animal Center (NLAC) and the Animal Care and Use Committee of the Faculty of Science, Mahidol University.

2.2.2 Anesthesia and euthanasia

The rats will be anesthetized by an intraperitoneal injection of 70 mg/kg sodium pentobarbitone (Ceva Santé Animale, Libourne, France) with 1-mL sterile syringe and a needle no. 26. Before euthanasia, a median laparotomy is performed, duodenum is removed. Rats are euthanized by a single percutaneous intracardiac injection of 120 mg/kg sodium pentobarbitone.

2.2.3 Experiment design (7- and 13-month experiments)

To determine whether T2DM permanently impaired bone structure from early adulthood until aging, one-month old GK and WT rats were used. After 7-day acclimatization, they were nursed until reaching the age of 7 and 13 months (n = 10 per group). Blood was collected to determine plasma ionized calcium by using ion-selective electrodes (model Stat Profile CCX; Nova Biomedical, Waltham, MA). Ten left femora and 10 left tibiae were collected from all rats, and bone length was measured with a vernier caliper. Ex vivo micro-computed tomography (μ CT) analysis of tibiae was performed to obtain volumetric bone cortical and trabecular parameters.

เลขที่สัญญา 46/2560

2.2.4 µCT analysis

As for ex vivo scanning, tibiae were enwrapped with moist gauze and were scanned at 65 kV, 615 μ A (Skyscan 1178 high-speed in vivo/ex vivo μ CT; Bruker MicroCT, Kontich, Belgium). As for in vivo scanning, after being anesthetized by 50 mg/kg sodium pentobarbitone, the rats had their legs fixed with polystyrene foam before scanning. The region of interest (ROI) for trabecular and cortical regions were 1.360–5.610 and 14.110– 18.360 mm distal to the proximal growth plate, respectively. The rotation angle was 0.54° at each step and voxel size was 85 μ m³ isotropically. Morphometric indices of cortical (tibial mid-shaft) and trabecular regions (tibial spongiosa) were cortical bone mineral density (BMD; g/cm³), trabecular BMD (g/cm³), cortical thickness (mm), cortical endosteal perimeter (mm) and medullary area (mm²). Three-dimensional (3D) figures were reconstructed by NRecon Software (SkyScan, version 1.6.4.8) with ring artifact correction of 10 and a beam hardening correction of 30%. Serial 8-bit images were analyzed by CTAn software (version 1.14.4).

2.2.5 Total RNA preparation

Total RNA is extracted from duodenal tissue by using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instruction. Total RNA (1 μ g) is reverse-transcribed to cDNA with iScript cDNA synthesis kit (Bio-rad, Hercules, CA, USA) by a conventional thermal cycler. Rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is used as an internal control to check the consistency of the reverse transcription.

2.2.6 Quantitative real-time PCR (qRT-PCR) of FGF-23-related genes and calcium transport associated genes

As described by Wongdee et al. (2016), qRT-PCR and melting curve analyses are operated by Bio-rad MiniOpticon system with SsoFast EvaGreen Supermix (Bio-rad). Amplification reaction is performed for 45 cycles at 95 °C for 5 s, 55–60 °C annealing/extension temperatures for 10 s. PCR products are also visualized on 2% agarose gel stained with 1 μ g/mL ethidium bromide (Sigma) under a UV transilluminator (Alpha Innotech, San Leandro, USA).

2.2.7 Ussing chamber technique

Ussing chamber technique optimized by our group is used to investigate the intestinal calcium transport (Charoenphandhu et al. 2009). This chamber consists of two halves that are separated by the intestinal sheet (Fig. 4). Each half of the chamber is filled with physiological bathing solution (see below), which sometimes contains calcium-enriched solution. Epithelial electrical properties in direct current (DC) mode, i.e., transepithelial

potential difference (PD), transepithelial resistance (TER) and short-circuit current (Isc), as well as epithelial impedance in alternating current (AC) mode are also determined by Ussing apparatus. These DC and AC properties help us to estimate intestinal calcium permeability.

Fig. 4 The Ussing chamber used in this experiment. The setup consists of two parts, i.e., the tissue chambers filled with bathing solution, and the electrical circuit for measurement of epithelial electrical parameters, including transepithelial potential difference (V_T or PD), short-circuit current (Isc) and transepithelial resistance (TER).

1. Intestinal tissue preparation

After laparotomy, duodenums are removed and placed in an ice-cold physiological bathing solution, pre-gassed with 5% CO_2 in 95% O_2 . Each intestinal segment will be cut longitudinally along the mesentery border in the bathing solution, and then mounted in Ussing chamber. The tissue is firmly fixed to the two halves of chamber with adhesive silicone grease. In the chamber, the tissue is bathed on both sides with 3 mL bathing solution continuously gassed with 5% CO_2 in 95% O_2 , and is maintained at 37 °C. Gas bubbles are fine but vigorous enough to minimize the unstirred water layer of the intestinal mucosa and to provide good mixing. The experimental duration is ~80–90 min.

2. Bathing solution

The physiological bathing solution contains in mM: 118 NaCl, 4.7 KCl, 1.1 $MgCl_2$, 1.25 CaCl₂, 23 NaHCO₃, 2.5 Na₂HPO₄, 12 D-glucose, and 2 mannitol. During the experiment, solution will be maintained at 37 °C, pH 7.4, osmolality of 289–292 mmol/kg water, and continuously gassed with humidified 5% CO₂ in 95% O₂. In some experiments, we expase the mucosal side of the intestinal sheet to various calcium-enriched solutions.

3. Unidirectional flux measurement

An intestinal segment (or cultured intestinal monolayer) is incubated in the chamber with physiological bathing solution for 10 min. One side of the chamber is later filled with bathing solution containing ⁴⁵Ca (added to the mucosal side for measuring mucosa-to-serosa (MS) fluxes; added to the serosal side for measuring serosa-to-mucosa (SM) fluxes). FGF-23 antibody is added to the Ussing chamber throughout the 10-min equilibration and 70-min ⁴⁵Ca exposure periods. Five to seven samples are collected from each setup for the calculation of the unidirectional flux of calcium from the hot side to the cold side. Net calcium absorption is the subtraction of SM from MS. ⁴⁵Ca is analyzed by liquid scintillation spectrophotometer (model Tri-Carb 3100; Packard, Meriden, CT, USA). Total calcium concentration in the bathing solution is analyzed by atomic absorption spectrophotometer (model SpectrAA-300; Varian Techtron, Springvale, Australia).

2.2.8 Statistical analysis

Unless otherwise specify, the results are expressed as means \pm standard error (SE). Comparisons between two groups are performed by unpaired Student's *t*-test. One-way analysis of variance with Tukey's post-test is used for multiple sets of data. The level of significance is P < 0.05. The statistical tests are analyzed by GraphPad Prism 6.0 for Mac OS X (GraphPad Software, San Diego, CA, USA).

อย่างไรก็ดี เมื่อได้เริ่มโครงการวิจัยจริง ผู้วิจัยได้ดำเนินการขออนุมัติจริยธรรวิจัยในสัตว์ทดลอง ตาม รายละเอียดในตารางที่ 1

วันเดือนปี	กิจกรรมที่ดำเนินการ
30 พ.ค. 2560	ทำสัญญาทุนวิจัย
11 ก.ค. 2560	ส่งเอกสารถึงคณะกรรมการพิจารณาจริยธรรมการวิจัยในสัตว์ทดลอง ม.บูรพา
	(บันทึกข้อความที่ ศธ 6220/0446)
28 ส.ค. 2560	ได้รับบันทึกข้อความ ศธ 6200/ว07411 "ผลการพิจารณาจริยธรรมการวิจัยฯ"
21 ก.ย. 2560	หน่วย COCAB ม.มหิดล ยื่นขอรับการพิจารณาจริยธรรมการวิจัยฯ โครงการขอ
	อนุมัติใช้สัตว์ที่ MUSC57-013-038
12 ต.ค. 2560	โครงการขออนุมัติใช้สัตว์ที่ MUSC57-013-038 ได้รับการอนุมัติ

ตารางที่ 1 Time-line การขออนุมัติใช้สัตว์ทดลอง

เนื่องด้วยความล่าช้าในการขออนุมัติจริยธรรวิจัยในสัตว์ทดลองนั้น ผู้วิจัยจึงปรับแผนการทดลอง โดย นอกจากจะศึกษาในหนูทดลองที่อายุมากแล้ว ยังได้ศึกษาบทบาทของเบาหวานประเภทที่ 2 สายพันธุ์ Goto-Kakizaki (GK) ว่าเป็นปัจจัยที่ทำให้กระดูกของสัตว์ทดลองแย่เร็วขึ้นหรือไม่อีกด้วย (GK rat อยู่ภายใต้ขอบเขต โครงการวิจัยขออนุมัติใช้สัตว์ที่ MUSC57-013-038 ซึ่งได้รับอนุมัติแล้ว) ทั้งนี้ เพื่อให้โครงการวิจัยล่าช้าน้อย ที่สุด และได้ output เป็นไปตามสัญญาทุนวิจัย โดยมีรายละเอียดการศึกษา และผลการทดลองดังนี้

วัตถุประสงค์ที่ 1 : เพื่อศึกษาผลของอายุ โรคเบาหวาน อายุและโรคเบาหวานต่อการเปลี่ยนแปลงสมดุล แคลเซียมในร่างกาย

วิธีดำเนินการทดลอง : ทำการเก็บตัวอย่างเลือดจากหัวใจด้วย heparinized syringe เมื่อหนูอายุ 7 เดือน เพื่อตรวจวัดแคลซียมอิสระ (free ionized calcium) ด้วยเทคนิค ion-selective electrodes ผลการศึกษา

เมื่อพิจารณาในแง่ของอายุ พบว่า อายุที่เพิ่มขึ้นไม่มีผลต่อการเปลี่ยนแปลงสมดุลแคลเซียมอิสระใน ร่างกายทั้งในหนูปกติและหนู GK (รูปที่ 5) แต่เมื่อพิจารณาผลของโรคเบาหวาน พบว่า โรคเบาหวานชนิดที่ 2 มีผลรบกวนสมดุลแคลเซียมอิสระในร่างกาย โดยทำให้ระดับแคลเซียมอิสระในเลือดลดลงทั้งในอายุ 7 และ 13 เดือน ซึ่งอายุที่เพิ่มขึ้นในกลุ่มโรคเบาหวาน ไม่มีผลต่อการเปลี่ยนแปลงสมดุลแคลเซียมในร่างกาย

รูปที่ 5 แสดงการเปลี่ยนแปลงสมดุลแคลเซียมอิสระในเลือดในหนูอายุ 7 และ 13 เดือน

วัตถุประสงค์ที่ 2 : เพื่อศึกษาผลของอายุ โรคเบาหวาน อายุและโรคเบาหวานต่อการเปลี่ยนแปลงทาง โครงสร้างของกระดูก

วิธีดำเนินการทดลอง : เมื่อหนูอายุ 7 เดือนและ 13 เดือน จึงตรวจวัดการเปลี่ยนแปลงทางโครงสร้างของ กระดูกหน้าแข้ง (tibia) ด้วยเทคนิคเอกซเรย์คอมพิวเตอร์สามมิติระดับไมโครเมตร (micro-computed tomography หรือ micro-CT) การศึกษาส่วนนี้ดำเนินการที่ หน่วยวิจัยด้านแคลเซียมและกระดูก คณะ วิทยาศาสตร์ มหาวิทยาลัยมหิดล

ผลการศึกษา

1. ความยาวกระดูก (bone length)

เมื่อเปรียบเทียบผลของอายุต่อการเปลี่ยนแปลงความยาวของกระดูก พบว่า หนูกลุ่มควบคุมมีความ ยาวของกระดูกเพิ่มขึ้นเฉพาะที่กระดูกต้นขา (femur) เท่านั้นเมื่อเปรียบเทียบระหว่างอายุ 7 เดือนและ 13 เดือน แต่ในหนูจีเค พบการยืดยาวของกระดูกทั้งในกระดูกหน้าแข้งและกระดูกต้นขา (รูปที่ 6A และ B)

เมื่อเปรียบเทียบความยาวของกระดูกระหว่างหนูปกติและหนูจีเค พบว่า หนูจีเคมีการเจริญเติบโตของ กระดูกน้อยกว่าหนูปกติ ซึ่งพบทั้งในอายุ 7 เดือนและ 13 เดือน โดยกระดูกของหนูจีเคสั้นกว่าหนูปกติทั้งใน กระดูกต้นขาและกระดูกหน้าแข้ง จากผลการศึกษาดังกล่าว มีความเป็นไปได้ว่า โรคเบาหวานชนิดที่ 2 ส่งผล ต่อการเจริญเติบโตของกระดูกทั้งในวัยกลางคน (7 เดือน) และวัยชรา (13 เดือน)

2. ความหนาแน่นของมวลกระดูก (bone mineral density)

เมื่อศึกษาความหนาแน่นของมวลกระดูกที่กระดูกหน้าแข้ง ไม่พบการเปลี่ยนแปลงความหนาแน่นของ มวลกระดูกที่ส่วนของกระดูกโครงข่าย (trabecular bone) ในหนูปกติเมื่อเปรียบเทียบระหว่างอายุ 7 เดือน และ 13 เดือน แต่พบการเพิ่มขึ้นของความหนาแน่นของมวลกระดูกที่บริเวณกระดูกส่วนนอก (cortical bone) ในหนูปกติ สันนิษฐานว่า ความหนาแน่นของมวลกระดูกที่บริเวณกระดูกโครงข่ายในหนูปกติอาจ เพิ่มขึ้นสูงสุดในช่วงอายุ 7 เดือน จึงไม่สามารถเพิ่มขึ้นได้อีกเมื่อตรวจวัดที่อายุ 13 เดือน ส่วนที่บริเวณกระดูก ส่วนนอกยังคงมีการเพิ่มขึ้นของมวลกระดูกอยู่เมื่ออายุเพิ่มขึ้นจาก 7 เดือนสู่ 13 เดือน (รูปที่ 6C และ D)

เมื่อเปรียบเทียบในกลุ่มหนูจีเคที่อายุ 7 เดือนและ 13 เดือน พบการลดลงของมวลกระดูกที่บริเวณ กระดูกโครงข่ายเมื่ออายุเพิ่มขึ้น แต่ในส่วนของกระดูกส่วนนอกยังพบการเพิ่มขึ้นของมวลกระดูกอยู่ หาก เปรียบเทียบระหว่างหนูปกติและหนูจีเค พบว่า หนูจีเคมีความหนาแน่นของมวลกระดูกน้อยกว่าหนูปกติทั้งใน ส่วนของกระดูกโครงข่ายและกระดูกส่วนนอกที่อายุ 7 เดือนและ 13 เดือน ผลการศึกษาชี้ว่า โรคเบาหวาน ชนิดที่ 2 ส่งผลให้เกิดการสูญเสียมวลกระดูก และอายุที่เพิ่มมากขึ้นยังส่งผลให้เกิดการสูญเสียมวลกระดูก โดยเฉพาะบริเวณกระดูกโครงข่ายมากขึ้นในกลุ่มโรคเบาหวาน

3. โครงสร้างและความแข็งแรงของกระดูกบริเวณ diaphysis

พิจารณาในแง่ของการเปลี่ยนแปลงทางโครงสร้างของกระดูกในหนูปกติ พบว่า อายุที่เพิ่มมากขึ้นทำ ให้ความหนาของกระดูกส่วนนอก (cortical thickness) มากขึ้น ซึ่งส่วนหนึ่งเป็นผลมาจากการลดลงของพื้นที่ บริเวณไขกระดูก (bone marrow) และเส้นรอบวงของกระดูกส่วนใน (endosteal perimeter) เมื่อพิจารณา ความแข็งแรงของกระดูกจากโมเมนต์ความเฉื่อย (moment of inertia) พบการลดลงของโมเมนต์ความเฉื่อย เฉพาะในแนวแกน × (MMI×) เมื่ออายุเพิ่มขึ้น (รูปที่ 6E-L)

เมื่อพิจารณาถึงผลของโรคเบาหวานทั้งในอายุ 7 เดือนและ 13 เดือน พบว่า กระดูกของหนูจีเคมี ขนาดใหญ่ขึ้นในแนวกว้าง ซึ่งอาจเกิดจากการขยายขนาดของกระดูกทั้งด้านในและด้านนอก (periosteal perimeter) รวมไปถึงการเพิ่มขึ้นของพื้นที่บริเวณไขกระดูก ทำให้หนูจีเคมีพื้นที่กระดูกส่วนนอก (cortical area) มากขึ้น แต่กลับมีความหนาของกระดูกลดลงเมื่อเปรียบเทียบกับหนูปกติ สันนิษฐานว่า การ เปลี่ยนแปลงทางโครงสร้างของกระดูกที่เกิดขึ้นในหนูจีเคนี้ เป็นกลไกหนึ่งที่ช่วยชดเชยความแข็งแรงของ กระดูกอันเนื่องมาจากการสูญเสียมวลกระดูกในโรคเบาหวานชนิดที่ 2 ซึ่งสอดคล้องกับค่าโมเมนต์ความเฉื่อย ซึ่งเป็นตัวชี้วัดความแข็งแรงของกระดูก ค่าโมเมนต์ความเฉื่อยในหนูจีเคเพิ่มขึ้นทั้งในแนวแกน × และเชิงขั้ว (polar moment of inertia) นอกจากนี้ยังพบว่า อายุที่เพิ่มขึ้นส่งผลให้กลไกการชดเชยความแข็งแรงของ กระดูกในหนูจีเคลดลง เมื่อเปรียบเทียบระหว่างหนูจีเคที่อายุ 7 เดือนและ 13 เดือน ผลการศึกษาดังกล่าวชี้ว่า โรคเบาหวานส่งผลเสียต่อกระดูกทั้งในแง่ของการเจริญเติบโตของกระดูก ความหนาแน่นของมวลกระดูก และ โครงสร้างของกระดูก ซึ่งอายุที่เพิ่มขึ้นยิ่งส่งผลเสียต่อกระดูกมากขึ้นในโรคเบาหวาน

* P<0.05, ** P<0.01, *** P<0.001 compared to corresponding WT

รูปที่ 6 แสดงโครงสร้างของกระดูกที่ตรวจวัดด้วยเทคนิคเอกซเรย์คอมพิวเตอร์สามมิติระดับไมโครเมตร ในหนู อายุ 7 เดือนและ 13 เดือน **วัตถุประสงค์ที่ 3 :** เพื่อศึกษาผลของอายุ โรคเบาหวาน อายุและโรคเบาหวานต่อการเปลี่ยนแปลงคุณสมบัติ เชิงกล (mechanical properties) ของกระดูก

วิธีดำเนินการทดลอง : เมื่อหนูอายุ 7 และ 13 เดือน จึงตรวจวัดคุณสมบัติเชิงกลของกระดูกต้นขาด้วยการ ทดสอบการดัดงอแบบ 3 จุด (three-point bending) ที่บริเวณกระดูก diaphysis

ผลการศึกษา

พิจารณาความแข็งแรงของกระดูกจากคุณสมบัติเชิงกล พบว่า หนูปกติมีความแข็งแรงของกระดูก เพิ่มขึ้นเมื่อเปรียบเทียบระหว่างหนูอายุ 7 เดือนและ 13 เดือน โดยมีค่าตัวแปร แรงที่รับได้สูงสุดในการดัดที่ กระดูกรับได้ (maximum load) แรงที่จุดครากก่อนการเสียรูปอย่างถาวร (yield load) และ stiffness เพิ่มขึ้น ซึ่งอายุที่เพิ่มขึ้นไม่มีผลต่อการเปลี่ยนแปลงคุณสมบัติแบบยืดหยุ่น (elasticity) ในหนูปกติ ซึ่งบ่งชี้จาก ค่า yield displacement ที่อายุ 7 และ 13 เดือน (รูปที่ 7A-F)

ในหนูจีเค อายุที่เพิ่มขึ้นส่งผลให้หนูจีเคเกิดการเปลี่ยนแปลงคุณสมบัติเชิงกล โดยมีค่าแรงที่จุดคราก ก่อนการเสียรูปอย่างถาวรสูงขึ้น ความยืดหยุ่นและการเสียรูปอย่างถาวรก่อนหัก (plasticity) ของกระดูกลดลง เมื่อเปรียบเทียบในหนูจีเคที่อายุ 7 เดือนและ 13 เดือน ซึ่งพิจารณาจากค่า yield displacement และ ultimate displacement

เมื่อเปรียบเทียบกับหนูปกติ พบว่า หนูจีเคมีความสามารถในการรับแรงดัดสูงกว่าและพบการเสียรูป อย่างถาวรก่อนหัก ซึ่งพิจารณาจากค่า ultimate displacement ที่เพิ่มขึ้นโดยไม่มีการเปลี่ยนแปลงค่า yield displacement ที่อายุ 7 เดือน

รูปที่ 7 แสดงคุณสมบัติเชิงกลของกระดูกจากการทดสอบการดัดงอแบบ 3 จุด ในหนูอายุ 7 เดือนและ 13 เดือน

การทดลองนำร่องการศึกษาการดูดซึมแคลเซียมที่ลำไส้ของหนูปกติ ผู้วิจัยใช้ลำไส้ส่วนต้นและส่วนปลาย ของ duodenum (proximal and distal duodenum) ของหนูเพศเมีย อายุประมาณ 5 เดือน มาศึกษาการ ดูดซึมแคลเซียมด้วยวิธี Ussing chamber technique ผลการศึกษาพบว่า proximal duodenum สามารถ ดูดซึมแคลเซียมได้มากกว่าส่วนปลาย (รูปที่ 8)

รูปที่ 8 การดูดซึมแคลเซียมที่ลำไส้ส่วน proximal และ distal duodenum ด้วยวิธี Ussing chamber; ตัวเลขในวงเล็บคือจำนวนสัตว์ทดลองในแต่ละกลุ่ม

การทดสอบการใช้ qRT-PCR primer

ผู้วิจัยได้ทดสอบ FGF23 และ GAPDH primer ในเยื่อบุลำไส้ส่วน duodenum ที่สกัดจากหนู ผล การศึกษาได้แสดงในรูปที่ 2 ซึ่งค่า Ct ของยีน GAPDH อยู่ที่ 22 รอบ PCR ส่วนการแสดงออกของยีน FGF-23 สามารถตรวจวัดได้ แต่พบว่าปริมาณการแสดงออกของ FGF-23 ค่อนข้างน้อยมาก เก็บข้อมูลได้เพียง 1-2 n (รูปที่ 9)

ร**ูปที่ 9** ผล Real-time PCR แสดงการแสดงออกของยีน (A) GAPDH และ (B) FGF-23 ในเนื้อเยื่อลำไส้ ส่วน duodenum ของหนูแรท ตัวเลขในวงเล็บคือจำนวนสัตว์ทดลองในแต่ละกลุ่ม

(3) สรุปและเสนอแนะเกี่ยวกับการวิจัยในขั้นต่อไป ตลอดจนประโยชน์ในทางประยุกต์ของผลการวิจัยที่ได้

จากการศึกษานี้ ทำให้ได้ข้อสรุปว่า เบาหวานประเภทที่ 2 ส่งผลให้เกิดการสูญเสียมวลกระดูก และอายุ ที่เพิ่มมากขึ้นยังส่งผลให้เกิดการสูญเสียมวลกระดูกโดยเฉพาะบริเวณกระดูกโครงข่ายมากขึ้นในกลุ่ม โรคเบาหวาน ถึงแม้ว่าเปลือกกระดูกของหนูเบาหวานประเภทที่ 2 จะดูแข็งแรงมากกว่าหนูปกติก็ตาม ดังนั้น การป้องกันไม่ให้เกิดโรคเบาหวาน ออกกำลังกายให้สุขภาพกระดูกแข็งแรง จึงน่าจะเป็นช่องทางที่ดีที่สุดที่จะ ช่วยชะลอการเสื่อมของกระดูกทั้งส่วนเปลือกและโครงข่ายภายในกระดูก

(4) ผลผลิต (Output)

จากการศึกษานี้ ผลการศึกษาการเปลี่ยนแปลงของกระดูกในหนูปกติและหนูเบาหวานประเภทที่ 2 ได้รับการตีพิมพ์ในวารสารวิชาการนานาชาติ จำนวน 1 เรื่อง ในวารสาร Journal of Physiological Sciences ดังนี้

Aeimlapa R, Charoenphandhu N, Suntornsaratoon P, **Wongdee K**, Tiyasatkulkovit W, Kengkoom K, Krishnamra N. Insulin does not rescue cortical and trabecular bone loss in type 2 diabetic Goto-Kakizaki rats. J Physiol Sci 2018; 10.1007/s12576-017-0558-4 (In Press).

(5) เอกสารอ้างอิงของโครงการวิจัย (References)

- มูลนิธิสถาบันวิจัยและพัฒนาผู้สูงอายุไทย (มส.ผส.). รายงานสถานการณ์ผู้สูงอายุไทย พ.ศ. 2557.
 กรุงเทพฯ:อมรินทร์พริ้นติ้งแอนด์พับลิชชิ่ง จำกัด (มหาชน); 2558. หน้า 18-21.
- 2. Bullamore JR, Wilkinson R, Gallagher JC, Nordin BE, Marshall DH. Effect of age on calcium absorption. Lancet 1970;2(7672):535-7.
- Charoenphandhu N, Nakkrasae LI, Kraidith K, Teerapornpuntakit J, Thongchote K, Thongon N, et al. Two-step stimulation of intestinal Ca²⁺ absorption during lactation by long-term prolactin exposure and suckling-induced prolactin surge. Am J Physiol Endocrinol Metab 2009;297(3):E609-19.
- 4. Francis RM, Peacock M, Taylor GA, Storer JH, Nordin BE. Calcium malabsorption in elderly women with vertebral fractures: evidence for resistance to the action of vitamin D metabolites on the bowel. Clin Sci (Lond) 1984;66(1):103-7.
- Gallagher JC. Vitamin D and aging. Endocrinol Metab Clin North Am 2013;42(2):319-32.
- 6. Hagiwara A, Nakayama F, Motomura K, Asada M, Suzuki M, Imamura T, et al. Comparison of expression profiles of several fibroblast growth factor receptors in

the mouse jejunum: suggestive evidence for a differential radioprotective effect among major FGF family members and the potency of FGF1. Radiat Res 2009;172(1):58-65.

- 7. Horst RL, Goff JP, Reinhardt TA. Advancing age results in reduction of intestinal and bone 1,25-dihydroxyvitamin D receptor. Endocrinology 1990;126(2):1053-7.
- 8. Imel EA, Peacock M, Pitukcheewanont P, Heller HJ, Ward LM, Shulman D, et al. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia. J Clin Endocrinol Metab 2006;91(6):2055-61.
- 9. Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet 2004;20(11):563-9.
- Khuituan P, Teerapornpuntakit J, Wongdee K, Suntornsaratoon P, Konthapakdee N, Sangsaksri J, et al. Fibroblast growth factor-23 abolishes 1,25-dihydroxyvitamin D₃enhanced duodenal calcium transport in male mice. Am J Physiol Endocrinol Metab 2012;302(8):E903-13.
- 11. Kinyamu HK, Gallagher JC, Balhorn KE, Petranick KM, Rafferty KA. Serum vitamin D metabolites and calcium absorption in normal young and elderly free-living women and in women living in nursing homes. Am J Clin Nutr 1997;65(3):790-7.
- 12. Kobayashi K, Imanishi Y, Miyauchi A, Onoda N, Kawata T, Tahara H, et al. Regulation of plasma fibroblast growth factor 23 by calcium in primary hyperparathyroidism. Eur J Endocrinol 2006;154(1):93-9.
- 13. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997;390(6655):45-51.
- 14. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, et al. Suppression of aging in mice by the hormone Klotho. Science 2005;309(5742):1829-33.
- 15. Liu S, Guo R, Simpson LG, Xiao ZS, Burnham CE, Quarles LD. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 2003;278(39):37419-26.
- 16. Liu S, Rowe PS, Vierthaler L, Zhou J, Quarles LD. Phosphorylated acidic serineaspartate-rich MEPE-associated motif peptide from matrix extracellular phosphoglycoprotein inhibits phosphate regulating gene with homologies to endopeptidases on the X-chromosome enzyme activity. J Endocrinol 2007;192(1):261-7.

- Masuda H, Chikuda H, Suga T, Kawaguchi H, Kuro-o M. Regulation of multiple ageing-like phenotypes by inducible klotho gene expression in klotho mutant mice. Mech Ageing Dev 2005;126(12):1274-83.
- 18. Mirams M, Robinson BG, Mason RS, Nelson AE. Bone as a source of FGF23: regulation by phosphate? Bone 2004;35(5):1192-9.
- 19. Nordin BE, Need AG, Morris HA, O'Loughlin PD, Horowitz M. Effect of age on calcium absorption in postmenopausal women. Am J Clin Nutr 2004;80(4):998-1002.
- 20. Pereira RC, Juppner H, Azucena-Serrano CE, Yadin O, Salusky IB, Wesseling-Perry K. Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone 2009;45(6):1161-8.
- 21. Quarles LD. Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat Rev Endocrinol 2012;8(5):276-86.
- 22. Ramsubeik K, Keuler NS, Davis LA, Hansen KE. Factors associated with calcium absorption in postmenopausal women: a post hoc analysis of dual-isotope studies. J Acad Nutr Diet 2014;114(5):761-7.
- 23. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, et al. Growth-related renal type II Na/Pi cotransporter. J Biol Chem 2002;277(22):19665-72.
- 24. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004;19(3):429-35.
- 25. Stubbs JR, He N, Idiculla A, Gillihan R, Liu S, David V, et al. Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease. J Bone Miner Res 2012;27(1):38-46.
- 26. Wang Y, Sun Z. Current understanding of klotho. Ageing Res Rev 2009;8(1):43-51.
- 27. Wasserman RH. Vitamin D and the dual processes of intestinal calcium absorption. J Nutr 2004;134(11):3137-9.
- 28. Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int 2012;82(7):737-47.
- 29. Wongdee K, Teerapornpuntakit J, Sripong C, Longkunan A, Chankamngoen W, Keadsai C, et al. Intestinal mucosal changes and upregulated calcium transporter and FGF-23 expression during lactation: Contribution of lactogenic hormone prolactin. Arch Biochem Biophys 2016;590:109-17.

- 30. Xu Y, Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocr Rev 2015;36(2):174-93.
- Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 2000;277(2):494-8.
- 32. Zhu Y, Goff JP, Reinhardt TA, Horst RL. Pregnancy and lactation increase vitamin Ddependent intestinal membrane calcium adenosine triphosphatase and calcium binding protein messenger ribonucleic acid expression. Endocrinology 1998;139(8):3520-4.

ภาคผนวก

บทความวิจัยที่เป็น Output โดยตรงของโครงการ

ORIGINAL PAPER

Insulin does not rescue cortical and trabecular bone loss in type 2 diabetic Goto-Kakizaki rats

Ratchaneevan Aeimlapa^{1,2} · Narattaphol Charoenphandhu^{1,2,3} · Panan Suntornsaratoon^{1,2} · Kannikar Wongdee^{2,4} · Wacharaporn Tiyasatkulkovit^{2,5} · Kanchana Kengkoom⁶ · Nateetip Krishnamra^{1,2}

Received: 12 March 2017/Accepted: 28 June 2017 © The Physiological Society of Japan and Springer Japan KK 2017

Abstract In type 2 diabetes mellitus (T2DM), the decreased bone strength is often associated with hyperglycemia and bone cell insulin resistance. Since T2DM is increasingly reported in young adults, it is not known whether the effect of T2DM on bone would be different in young adolescents and aging adults. Here, we found shorter femoral and tibial lengths in 7-month, but not 13-month, Goto-Kakizaki (GK) T2DM rats as compared to wild-type rats. Bone µCT analysis showed long-lasting impairment of both cortical and trabecular bones in GK rats. Although insulin treatment effectively improved hyperglycemia, it was not able to rescue trabecular BMD and cortical thickness in young adult GK rats. In conclusion, insulin treatment and alleviation of hyperglycemia did not increase BMD of osteopenic GK rats. It is likely that early prevention of insulin resistance should prevail over treatment of full-blown T2DM-related osteopathy.

Narattaphol Charoenphandhu naratt@narattsys.com

- ¹ Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
- ² Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- ³ Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- ⁴ Office of Academic Management, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
- ⁵ Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- ⁶ National Laboratory Animal Center, Mahidol University, Nakhon Pathom, Thailand

Keywords Blood glucose · Bone mineral density · Diabetes mellitus · Diabetic osteopathy · Goto-Kakizaki rats

Introduction

Diabetes mellitus (DM) is a globally common non-communicable disease which has deleterious effects on many organ systems, e.g., cardiovascular and nervous systems, kidney, and bone structure and strength [1]. Several investigations into type 1 (T1DM) and type 2 DM (T2DM) mostly showed similar outcomes, i.e. both types of DM cause impaired osteoblast and osteoclast functions, abnormal formation and alignment of collagen in bone matrix, resulting in weakening of bone mechanical properties and increased fracture risk [2–4]. Specifically, hyperglycemia and cellular insulin resistance as well as DM-associated cytokines [e.g., tumor necrosis factor- α (TNF- α) and interleukin (IL)-1 and IL-6] often suppress bone-forming activity of osteoblasts, but accelerate osteoclast activity to resorb mineralized bone [5–7]. Meanwhile, an increase in circulating glucose level induces the production of advanced glycation end products (AGE) in the bone matrix [3, 4, 8], thereby compromising bone elastic property and its ability to repair microcracks.

In general, T2DM is the most common form of DM that accounts for 90–95% of diabetic patients [1]. It results from insulin resistance and relative rather than absolute insulin deficiency. Most T2DM patients develop obesity or high body fat distribution with onset later in life (\sim 55–57 years) [9–11]. Although there are numerous studies of bone change under T2DM condition in various diabetic animal models, most studies have been performed in adolescent or young adult animals with relatively short

periods of hyperglycemia [12–14]. Thus, evidence that reports the final outcome of bone change in late adulthood or aging rats is scant.

Several therapeutic strategies are used to limit diabetic progress as well as improve quality of life, e.g., dietary control, exercises, antidiabetic drug therapy, and insulin replacement therapy. Because insulin can improve whole body glycemic control by reducing endogenous glucose production, fasting blood glucose and hemoglobin A1c (HbA1c) [15–19], insulin injection is the treatment of choice for T2DM patients with poor glycemic control or poor response to antidiabetic drugs [20]. There has been a report that insulin action in osteoblasts played a role in the maintenance of bone structure [18]. Normally, insulin is administered to patients with T1DM as well as to patients in the later stages of T2DM [20-22]. Since bone deterioration might have occurred earlier in T2DM, perhaps just after the onset of insulin-resistant pre-diabetic condition [23], it is not known whether early insulin therapy in the adolescent would be effective in restoring bone structure.

In the present study, we aimed to investigate (1) whether in T2DM bone structure was permanently impaired from adulthood to aging, and (2) whether insulin therapy during the adolescent period could restore bone loss in Goto-Kakizaki (GK) rats. GK rats were used in this study because they are a non-obese T2DM substrain of Wistar rats that manifest hyperglycemia with insulin resistance and stable fasting hyperglycemia of $\sim 130-150$ mg/dL [24–26]. Their non-obese characteristic also minimizes the positive effect of body weight on bone formation, which is often observed in obese T2DM models.

Materials and methods

Animals

The experiment was divided into two parts, i.e., experiment 1 (7- and 13-month experiments) and experiment 2 (insulin treatment experiment). For the aging experiment (experiment 1), 1-month-old female GK rats and age-matched wild-type (WT) Wistar rats were used, while in the insulin treatment experiment, 6-week-old female GK and WT rats were used. All rats were purchased from the Center for Laboratory Experimental Animals, Japan. They were housed in stainless steel cages under a 12:12-h light–dark cycle. Room temperature was $\sim 22-24$ °C with relative humidity of $\sim 50-60\%$. They were fed standard chow (Perfect Companion, Thailand) and reverse osmosis water ad libitum. All animals were cared for in accordance with the Mahidol University policy for the care and use of animals for scientific purposes. This study has been

approved by the ethics committee of the National Laboratory Animal Center and the Animal Care and Use Committee of the Faculty of Science, Mahidol University.

Experimental design

Experiment 1 (7- and 13-month experiments)

To determine whether T2DM permanently impaired bone structure from early adulthood until aging, 1-month-old GK and WT rats were used. After a 7-day acclimatization, they were nursed until reaching the age of 7 and 13 months (n = 10 per group). Blood was collected to determine plasma ionized calcium by using ion-selective electrodes (model Stat Profile CCX; Nova Biomedical, Waltham, MA, USA). Ten left femora and ten left tibiae were collected from all rats, and bone length was measured with a vernier caliper. Ex vivo micro-computed tomography (μ CT) analysis of the tibiae was performed to obtain volumetric bone cortical and trabecular parameters. The timeline of this experiment is shown in Fig. 1a.

Experiment 2 (insulin treatment experiment)

To determine whether insulin therapy could restore bone mass in T2DM animal model, 6-week-old female rats were divided into 3 groups, i.e., WT rats, GK rats, and insulintreated GK rats (GK + Ins; n = 10 per group). After a 7-day acclimatization, intraperitoneal glucose tolerance test (IPGTT) was performed. Blood was collected at 15, 30, 60, and 120 min from all animals to determine the blood glucose levels using Accu-Chek Active Test Strips (Roche Diagnostics, Germany). At week 16, rats in the GK + Ins groups were daily injected subcutaneously with 4.6 U/kg/dose insulin glargine (Gla-100, Lantus; Sanofi-Aventis, Germany) 3 doses/day, and blood glucose was monitored weekly. This insulin glargine administration regimen has been validated for successfully lowering blood glucose. Specifically, in our pilot study, blood glucose levels were monitored at days 1, 4, and 7 of treatment. Since it was found that this dose of insulin glargine effectively decreased blood glucose, this dose was used for the entire experiment.

All groups of animals were nursed until 28 weeks of age. In vivo μ CT analysis of the tibiae was performed at various time points, i.e., 20, 24, and 28 weeks (4, 8, and 12 weeks after treatments, respectively), and week 8 was used as a baseline (0 week; baseline control). After euthanasia, blood was collected to determine plasma ionized calcium, and the duodenum was removed to determine transepithelial calcium flux by the Ussing chamber technique [27]. The timeline of this experiment is depicted in Fig. 1b.

Fig. 1 Timelines of experiment 1 (a) and 2 (b). Ca calcium, IPGTT intraperitoneal glucose tolerance test, µCT micro-computed tomography

µCT analysis

For ex vivo scanning, the tibiae were wrapped with moist gauze and scanned at 65 kV, 615 µA (Skyscan 1178 highspeed in vivo/ex vivo µCT; Bruker MicroCT, Kontich, Belgium). For in vivo scanning, after being anesthetized by 50 mg/kg sodium pentobarbitone, the rats had their legs fixed with polystyrene foam before scanning. The region of interest (ROI) for trabecular and cortical regions were 1.360-5.610 and 14.110-18.360 mm distal to the proximal growth plate, respectively. The rotation angle was 0.54° at each step and voxel size was 85 µm³ isotropically. Morphometric indices of cortical (tibial mid-shaft) and trabecular regions (tibial spongiosa) were cortical bone mineral density (BMD; g/cm³), trabecular BMD (g/cm³), cortical thickness (mm), cortical endosteal perimeter (mm) and medullary area (mm²). Three-dimensional (3D) figures were reconstructed by NRecon Software (SkyScan, v.1.6.4.8) with ring artifact correction of 10 and a beam hardening correction of 30%. Serial 8-bit images were analyzed by CTAn software (v.1.14.4).

Measurement of transepithelial calcium flux

For ex vivo intestinal calcium transport [27], the duodenum was removed after a median laparotomy. The duodenum was cut longitudinally to expose the mucosa, which was later well rinsed by isotonic bathing solution. Then, the intestinal tissue was mounted in an Ussing chamber and bathed on both sides

of the hemichambers with an isotonic bathing solution containing (in mmol/L) 118 NaCl, 4.7 KCl, 1.1 MgCl₂, 1.25 CaCl₂, 23 NaHCO₃, 12 D-glucose, and 2 mannitol (all purchased from Sigma) for 10 min. The solution in the mucosal hemichamber was then changed to the bathing solution containing ⁴⁵Ca (initial amount of 0.45 μ Ci/mL, final specific activity of 90 mCi/mol; catalog no. NEZ013; PerkinElmer, Boston, MA, USA). Unidirectional calcium flux ($J_{H\rightarrow C}$, nmol/ h/cm²) from the hot side (H; mucosal side) to the cold side (C; serosal side) was calculated by Eqs. 1 and 2:

$$J_{\mathrm{H}\to\mathrm{C}} = R_{\mathrm{H}\to\mathrm{C}} / (S_{\mathrm{H}} \times A), \tag{1}$$

$$S_{\rm H} = C_{\rm H}/C_{\rm To},\tag{2}$$

where $R_{H\to C}$ is the rate of ⁴⁵Ca appearance in the cold side (cpm/h); S_H is the specific activity of the hot side (cpm/ nmol); *A* is the surface area of the tissue (cm²); C_H is the mean radioactivity of the hot side (cpm); and C_{To} is the total calcium content in the hot side (nmol). ⁴⁵Ca radioactivity was analyzed by a iquid scintillation spectrophotometer (model Tri-Carb 3100; Packard, Meriden, CT, USA). In the absence of a transepithelial calcium gradient (the same calcium concentration of 1.25 mmol/L in both hemichambers), the calcium flux represented active calcium transport in the mucosal-to-serosal direction.

Statistical analysis

Results are expressed as mean \pm SE. Two sets of independent data were compared by unpaired Student's *t* test.

One-way analysis of variance (ANOVA) with Newman– Keuls multiple comparisons test was used for multiple sets of independent data. The level of significance for statistical tests was P < 0.05. All data were analyzed by GraphPad Prism 5 (GraphPad Software, San Diego, CA, USA).

Results

In the adolescent period, plasma free ionized calcium of 7-month-old GK rats was markedly lower when compared to WT and the reduction lasted until 13 months. However, unlike WT rats, the plasma ionized calcium levels in GK rats did not decrease from 7 months to 13 months (Fig. 2). The body weight of WT rats increased with increasing age, whereas the lower body weight of GK rats did not change with age (Fig. 3a). Low body weight of GK rats could be partly due to shorter femoral and tibial lengths in 7-monthold GK rats (Fig. 3b, c). However, there was no difference in bone length between GK and WT at 13 months. Shorter long bones of 7-month-old GK rats suggested a possible deleterious effect of T2DM on body growth, particularly bone elongation in adulthood (7-month group).

Bone microarchitectural analyses by μ CT revealed impairment of bone structure in GK rats, i.e., lower cortical BMD, trabecular BMD and cortical thickness when compared to WT (Fig. 4a–c). Moreover, the trabecular BMD in GK rats was markedly lower, by ~33 and ~49% in 7- and 13-month-old GK rats, respectively, possibly resulting from expansion of the medullary area (enlarged marrow cavities) and endosteal perimeter (Fig. 4d–f). Medullary areas were enlarged by ~40 and ~76% in 7- and 13-month-old GK rats, respectively (Fig. 4e, f).

Furthermore, we investigated whether early insulin treatment in adolescence could rescue bone microstructure in GK rats. Prior to μ CT analyses, we determined glucose tolerance using IPGTT in 7-week-old GK rats and found

Fig. 2 Plasma ionized calcium of female WT and GK rats. *Numbers in parentheses* are numbers of animals. ***P < 0.001 vs. agematched WT rats

Fig. 3 Body weight (a), femoral (b) and tibial lengths (c) of 7- and 13-month-old female WT and GK rats. *Numbers in parentheses* are numbers of animals. ***P < 0.001 vs. age-matched WT rats

impaired glucose tolerance after 2 g/kg glucose loading (Fig. 5a, b), indicating the presence of insulin resistance in GK rats. After 12 weeks of daily insulin glargine injection, plasma glucose levels were restored to the normal range (Fig. 5c). Interestingly, plasma free ionized calcium

Fig. 4 Ex vivo μ CT analyses in the tibiae of 7- and 13-month-old female WT and GK rats. **a** Cortical and **b** trabecular BMD, **c** cortical thickness, **d** endosteal perimeter, **e** medullary area, and **f** representative μ CT images of the tibial cortical envelopes (midshaft). *Numbers*

in parentheses are numbers of animals. *Arrows* indicate the enlarged marrow cavities in GK rats. *P < 0.05, ***P < 0.001 vs. agematched WT rats

partially increased in insulin-treated GK rats with no changes in the transpithelial calcium transport across the intestine (Fig. 5d, e). However, longitudinal in vivo μ CT analysis demonstrated that 12 weeks of daily insulin treatment in GK rats did not rescue trabecular BMD, cortical thickness, or medullary area (Fig. 6). In 12-week GK + Ins rats, trabecular BMD was further decreased when compared with GK rats, suggesting that T2DM permanently destroyed the cortical and trabecular bone, which could not be restored by early insulin treatment.

Discussion

It is evident that hyperglycemia and insulin resistance in T1DM and T2DM are able to impair bone structure and function by causing abnormal bone cell activities (cellular failure) and aberrant extracellular matrix structure and composition (matrix failure) (see [2] for review). In the present study, we demonstrated the effects of T2DM on longitudinal bone growth and BMD in adolescent (7-month-old) and late adult (13-month-old) GK rats. We found that GK rats had much lower body weight in both periods. Interestingly, although body weight of GK rats was much lower than WT rats, the final outcome of bone length in aging GK rats was not different from WT rats, indicating that T2DM might interfere with bone elongation

only in the growing period. In other words, the shorter bone length in GK rats was observed in the young adult period, but later bone length reached the same length as in WT rats in the late adult period. Indeed, the reason for this evidence was unclear. There have been reports of both normal and impaired growth in DM individuals [28–30], which might link to DM-associated growth retardation [2, 30].

Normally, bone elongation depends on nutrient adequacy, e.g., calcium and zinc, as well as local and systemic factors, e.g., growth hormone (GH), insulin-like growth factor-1 (IGF-1), and insulin [31-34]. Specifically, GH cooperates with insulin to enhance growth plate chondrocyte proliferation and maturation through overexpression of endochondral bone formation-related genes, such as type 2 collagen and aggrecan [34, 35]. Therefore, relative insulin resistance in T2DM, which is caused by abnormal insulin signaling [19], could impair growth plate chondrocyte development or bone growth. Bone elongation is generally controlled by proliferation and differentiation of chondrocytes in the growth plate. The growth plate is divided into three zones, i.e., the resting zone with low mitotic activity chondroblasts that later migrate into the proliferative zone, where cells have high proliferative capacity. Proliferative chondrocytes become enlarged in the hypertrophic zone before undergoing apoptosis, and are replaced by osteoblasts that arrive with vascularization [31, 36, 37]. Therefore, it is possible that a decrease in bone

Fig. 5 Blood glucose profile of 7-week-old female WT, GK and GK + Ins rats. **a** Intraperitoneal glucose tolerance test (IPGTT) after administration of 2 g/kg glucose solution. Blood glucose was measured at various time points, i.e., 0, 15, 30, 60, and 120 min. **b** Area under the curve of IPGTT. **c** Weekly blood glucose at 0, 4, 8,

growth in GK rats could result from delayed growth plate chondrocyte differentiation and/or premature chondrocyte apoptosis [14, 38].

Consistent with reports in T2DM, Muñoz et al. [30], who studied the heights of T1DM patients in different pubertal stages, reported that adult heights were eventually within normal range, but growth velocity was below average. The present finding of shorter bone length in 7-month-old GK rats was almost consistent with the aforementioned finding. Hence, catch-up growth was observed in 13-month-old GK rats in the present

and 12 weeks of insulin treatment. **d** Plasma ionized calcium. **e** Transepithelial calcium flux across the duodenum of 28-week WT, GK, and GK + Ins rats. *Numbers in parentheses* are numbers of animals. *P < 0.05, **P < 0.01, ***P < 0.001 vs. age-matched WT rats; ##P < 0.01, ###P < 0.001 vs. GK rats

longitudinal study. This may be caused by both groups having completely passed the growth spurt period in which the growth hormone level is very high [39]. In addition, an optimal estrogen level during sexual maturation enhances skeletal growth [40–42]. Therefore, the accomplished growth spurt period might be a factor for catch-up bone growth of GK rats.

Furthermore, μ CT analyses revealed that cortical and trabecular BMD and cortical thickness of GK rats were significantly lower than in WT rats from 7 until 13 months. The lower BMD in both cortical and trabecular portions led

Fig. 6 Trabecular BMD (a), cortical thickness (b), medullary area (c), and representative μCT images of the tibial cortical envelopes (midshaft) (d) of female WT, GK, and GK + Ins rats as determined by in vivo µCT analyses. For the GK + Ins group, rats received daily subcutaneous injection of insulin glargine, while WT and GK rats were injected with normal saline (vehicle). In vivo µCT analyses were performed before insulin treatment (0 week; 8 weeks of age) and at 4. 8. 12 weeks after insulin treatment. Numbers in parentheses are numbers of animals. *P < 0.05, **P < 0.01, ***P < 0.001 vs. age-matched WT rats; $^{\#}P < 0.05$ vs. GK rats

to the expansion of the medullary area which persisted until 13 months, suggesting long-lasting negative effects of T2DM on bone. Therefore, we confirmed the T2DM-induced permanent bone loss by performing a longitudinal insulin rescue study by injections with insulin glargine 3 doses daily for 12 weeks (from 16 to 28 weeks of age). Strikingly, although insulin treatment could restore blood glucose towards the normal baseline, it was unable to recover bone density (both trabecular and cortical portions) in GK rats (Fig. 6), suggesting that insulin glargine could improve hyperglycemia but not insulin resistance in bone cells. The reason why insulin treatment failed to improve bone architecture may be due to several factors, e.g., different degrees of severity of insulin resistance in bone cells or bone-derived mesenchymal stem cells and other cell types (e.g., muscle cells). Recently, GK rats have been reported to exhibit insulin resistance with a decrease in insulin receptor expression in bone cells compared with WT rats [43]. Furthermore, prolonged accumulation of advanced glycation end products (AGEs) in the bone extracellular matrix and insulin resistance-related prolonged reactive oxygen species (ROS) production would continuously stimulate osteoclast survival and function, leading to the enhanced bone resorption [44, 45].

Non-obese and insulin resistance are important characteristics of GK rats [25]. Wei et al. [19] have provided evidence that insulin resistance caused perturbation of osteoblast function that notably affected whole-body glucose homeostasis. They demonstrated in mice lacking one allele of *Insr* in osteoblasts (*Collal-Insr*^{+/-} mice) that bone-specific insulin resistance led to a decrease in circulating levels of bone-derived hormone osteocalcin, which is needed for optimal insulin sensitivity in muscle and white adipose tissue, thereby impairing glucose homeostasis [19, 46]. Importantly, osteocalcin as a noncollagenous extracellular matrix protein is largely responsible for hydroxyapatite binding in bone formation [47]. Thus, perturbation of insulin signaling could indirectly impair bone strength through a reduction in osteocalcin production [19, 48]. Furthermore, Wei et al. [19] noted that insulin resistance in high-fat diet-fed mice was developed from lipotoxicity-induced degradation of insulin receptors in osteoblasts. Therefore, a reduction in insulin receptor expression in osteoblasts probably causes ineffectiveness of insulin replacement therapy to recover BMD of GK rats.

Besides osteoblasts, osteoclasts are another target of insulin action. Thomas et al. [49] showed the expression of insulin receptor on mouse osteoclast-like cells. Consistent with our previous study in GK rats [14], bone histomorphometric analysis confirmed that DM reduced osteoblast function (e.g., osteoblast surface, mineralizing surface, and bone formation rate), while increasing osteoclast-mediated bone resorption (e.g., osteoclast surface and eroded surface). In addition, GK rats have been shown to increase mRNA expression of inflammatory cytokines, especially TNF-a, IL-1, and IL-6, all of which are known to be osteoclastogenic factors and might contribute to the enhanced bone resorption [50]. DM-induced bone resorption also caused the elevation of extracellular calcium in the bone microenvironment, which, in turn, enhanced differentiation of bone marrow stromal cells into adipocytes, and decreased osteoblast number and perhaps osteoblastmediated bone formation [51].

Taken together, the present study showed the longlasting negative effects of T2DM on cortical and trabecular bones during the stage of adulthood to the aging period. Early treatment with insulin in adolescent GK rats could not restore bone microstructure or BMD to normal, although it successfully abolished hyperglycemia. Therefore, early prevention of T2DM is exclusively the best way to control the T2DM-associated bone health deterioration. Limitations of the present study include the absence of data on the insulin tolerance test and bone cell insulin resistance. Moreover, in vitro and in vivo bone cell responses under diabetic condition and insulin treatment should be further investigated for a better understanding of the pathogenesis of diabetic osteopathy.

Acknowledgements This study was supported by the grants from Cluster and Program Management Office (CPMO), National Science and Technology Development Agency (P-11-00639 to NK), Thailand Research Fund (TRF)–Mahidol University through the TRF Senior Research Scholar Grant (RTA5780001 to NC), Science Achievement Scholarship of Thailand (to RA), the Faculty of Science, Mahidol University (to NC), TRF International Research Network Program (IRN60W0001 to KW and NC), and the Research and Development Fund, Burapha University (46/2560 to KW).

Author contributions Conception and design of research—NC and KW. Performed experiments—RA, PS, WT, and KK. Analyzed data—RA, NC, KW, and NK. Drafted manuscript—RA, NC, KW, and NK.

Compliance with ethical standards

Ethical approval All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest The authors declare that there is no conflict of interest.

References

- American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1):S81–S90
- Wongdee K, Krishnamra N, Charoenphandhu N (2017) Derangement of calcium metabolism in diabetes mellitus: negative outcome from the synergy between impaired bone turnover and intestinal calcium absorption. J Physiol Sci 67:71–81
- Aoki C, Uto K, Honda K, Kato Y, Oda H (2013) Advanced glycation end products suppress lysyl oxidase and induce bone collagen degradation in a rat model of renal osteodystrophy. Lab Invest 93:1170–1183
- Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214
- 5. Hienz SA, Paliwal S, Ivanovski S (2015) Mechanisms of bone resorption in periodontitis. J Immunol Res 2015:615486
- Won HY, Lee JA, Park ZS, Song JS, Kim HY, Jang SM, Yoo SE, Rhee Y, Hwang ES, Bae MA (2011) Prominent bone loss mediated by RANKL and IL-17 produced by CD4 + T cells in TallyHo/JngJ mice. PLoS ONE 6:e18168
- Motyl KJ, Botolin S, Irwin R, Appledorn DM, Kadakia T, Amalfitano A, Schwartz RC, McCabe LR (2009) Bone inflammation and altered gene expression with type I diabetes early onset. J Cell Physiol 218:575–583
- Silva MJ, Brodt MD, Lynch MA, McKenzie JA, Tanouye KM, Nyman JS, Wang X (2009) Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth, and diminished whole bone strength and fatigue life. J Bone Miner Res 24:1618–1627
- Meisinger C, Döring A, Thorand B, Heier M, Löwel H (2006) Body fat distribution and risk of type 2 diabetes in the general population: are there differences between men and women? The MONICA/KORA Augsburg cohort study. Am J Clin Nutr 84:483–489

- Heshka S, Ruggiero A, Bray GA, Foreyt J, Kahn SE, Lewis CE, Saad M, Schwartz AV, Look ARG (2008) Altered body composition in type 2 diabetes mellitus. Int J Obes 32:780–787
- 11. Gómez-Ambrosi J, Silva C, Galofré JC, Escalada J, Santos S, Gil MJ, Valentí V, Rotellar F, Ramírez B, Salvador J, Frühbeck G (2011) Body adiposity and type 2 diabetes: increased risk with a high body fat percentage even having a normal BMI. Obesity 19:1439–1444
- 12. Prisby RD, Swift JM, Bloomfield SA, Hogan HA, Delp MD (2008) Altered bone mass, geometry and mechanical properties during the development and progression of type 2 diabetes in the Zucker diabetic fatty rat. J Endocrinol 199:379–388
- Kawashima Y, Fritton JC, Yakar S, Epstein S, Schaffler MB, Jepsen KJ, LeRoith D (2009) Type 2 diabetic mice demonstrate slender long bones with increased fragility secondary to increased osteoclastogenesis. Bone 44:648–655
- 14. Lapmanee S, Charoenphandhu N, Aeimlapa R, Suntornsaratoon P, Wongdee K, Tiyasatkulkovit W, Kengkoom K, Chaimongkolnukul K, Seriwatanachai D, Krishnamra N (2014) High dietary cholesterol masks type 2 diabetes-induced osteopenia and changes in bone microstructure in rats. Lipids 49:975–986
- Wang Z, Hedrington MS, Gogitidze Joy N, Briscoe VJ, Richardson MA, Younk L, Nicholson W, Tate DB, Davis SN (2010) Dose-response effects of insulin glargine in type 2 diabetes. Diabetes Care 33:1555–1560
- Rosenstock J, Schwartz SL, Clark CM Jr, Park GD, Donley DW, Edwards MB (2001) Basal insulin therapy in type 2 diabetes: 28-week comparison of insulin glargine (HOE 901) and NPH insulin. Diabetes Care 24:631–636
- Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308
- Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Brüning JC, Clemens TL (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319
- Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS, Karsenty G (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 124:1–13
- 20. Bretzel RG, Eckhard M, Landgraf W, Owens DR, Linn T (2009) Initiating insulin therapy in type 2 diabetic patients failing on oral hypoglycemic agents: basal or prandial insulin? The APOLLO trial and beyond. Diabetes Care 32(Suppl 2):S260–S265
- Turner RC, Cull CA, Frighi V, Holman RR (1999) Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 281:2005–2012
- Holman RR, Thorne KI, Farmer AJ, Davies MJ, Keenan JF, Paul S, Levy JC, Group TS (2007) Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes. N Engl J Med 357:1716–1730
- 23. Charoenphandhu N, Suntornsaratoon P, Krishnamra N, Sa-Nguanmoo P, Tanajak P, Wang X, Liang G, Li X, Jiang C, Chattipakorn N, Chattipakorn S (2017) Fibroblast growth factor-21 restores insulin sensitivity but induces aberrant bone microstructure in obese insulin-resistant rats. J Bone Miner Metab 35:142–149
- 24. Murakawa Y, Zhang W, Pierson CR, Brismar T, Östenson CG, Efendic S, Sima AA (2002) Impaired glucose tolerance and insulinopenia in the GK-rat causes peripheral neuropathy. Diabetes Metab Res Rev 18:473–483
- Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125:451–472

- Shafrir E (2010) Contribution of animal models to the research of the causes of diabetes. World J Diabetes 1:137–140
- 27. Tudpor K, Teerapornpuntakit J, Jantarajit W, Krishnamra N, Charoenphandhu N (2008) 1,25-Dihydroxyvitamin D_3 rapidly stimulates the solvent drag-induced paracellular calcium transport in the duodenum of female rats. J Physiol Sci 58:297–307
- Lebl J, Schober E, Zidek T, Baldis S, Rami B, Pruhova S, Kolouskova S, Snajderova M, Frisch H (2003) Growth data in large series of 587 children and adolescents with type 1 diabetes mellitus. Endocr Regul 37:153–161
- Armas LA, Akhter MP, Drincic A, Recker RR (2012) Trabecular bone histomorphometry in humans with type 1 diabetes mellitus. Bone 50:91–96
- 30. Muñoz MT, Barrios V, Pozo J, Argente J (1996) Insulin-like growth factor I, its binding proteins 1 and 3, and growth hormone-binding protein in children and adolescents with insulindependent diabetes mellitus: clinical implications. Pediatr Res 39:992–998
- Samsa WE, Zhou X, Zhou G (2017) Signaling pathways regulating cartilage growth plate formation and activity. Semin Cell Dev Biol 62:3–15
- 32. Wu S, Aguilar AL, Ostrow V, De Luca F (2011) Insulin resistance secondary to a high-fat diet stimulates longitudinal bone growth and growth plate chondrogenesis in mice. Endocrinology 152:468–475
- 33. Hara T, Takeda TA, Takagishi T, Fukue K, Kambe T, Fukada T (2017) Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci 67:283–301
- 34. Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40:46–62
- 35. Yao Y, Zhai Z, Wang Y (2014) Evaluation of insulin medium or chondrogenic medium on proliferation and chondrogenesis of ATDC5 cells. Biomed Res Int 2014:569241
- 36. Wongdee K, Krishnamra N, Charoenphandhu N (2012) Endochondral bone growth, bone calcium accretion, and bone mineral density: how are they related? J Physiol Sci 62:299–307
- Kierszenbaum AL, Tres LL (2016) Connective tissue. In: Kierszenbaum AL, Tres LL (eds) Histology and cell biology: an introduction to pathology, 4th edn. Elsevier Saunders, Philadelphia, pp 123–159
- 38. Aeimlapa R, Wongdee K, Charoenphandhu N, Suntornsaratoon P, Krishnamra N (2014) Premature chondrocyte apoptosis and compensatory upregulation of chondroregulatory protein expression in the growth plate of Goto-Kakizaki diabetic rats. Biochem Biophys Res Commun 452:395–401
- MacKelvie KJ, Khan KM, McKay HA (2002) Is there a critical period for bone response to weight-bearing exercise in children and adolescents? a systematic review. Br J Sports Med 36:250–257
- Cutler GB Jr (1997) The role of estrogen in bone growth and maturation during childhood and adolescence. J Steroid Biochem Mol Biol 61:141–144
- Juul A (2001) The effects of oestrogens on linear bone growth. Hum Reprod Update 7:303–313
- 42. Börjesson AE, Windahl SH, Karimian E, Eriksson EE, Lagerquist MK, Engdahl C, Antal MC, Krust A, Chambon P, Sävendahl L, Ohlsson C (2012) The role of estrogen receptor-α and its activation function-1 for growth plate closure in female mice. Am J Physiol Endocrinol Metab 302:E1381–E1389
- 43. Pérez-Castrillón JL, Riancho JA, de Luis D, Gonzalez-Sagrado M, Domingo-Andres M, Dueñas-Laita A (2014) Expression of genes related to energy metabolism (osteocalcin, FOXO1, insulin receptor, and SOST) in bone cells of Goto-Kakizaki rats and response to bariatric surgery. Surg Obes Relat Dis 10:299–303

- 44. Rőszer T (2011) Inflammation as death or life signal in diabetic fracture healing. Inflamm Res 60:3–10
- 45. Lee SK, Huang H, Lee SW, Kim KH, Kim KK, Kim HM, Lee ZH, Kim HH (2004) Involvement of iNOS-dependent NO production in the stimulation of osteoclast survival by TNF-α. Exp Cell Res 298:359–368
- 46. Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G (2012) Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50:568–575
- 47. Fukumoto S, Martin TJ (2009) Bone as an endocrine organ. Trends Endocrinol Metab 20:230–236
- Ducy P (2011) The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia 54:1291–1297

- Thomas DM, Udagawa N, Hards DK, Quinn JM, Moseley JM, Findlay DM, Best JD (1998) Insulin receptor expression in primary and cultured osteoclast-like cells. Bone 23:181–186
- Ehses JA, Lacraz G, Giroix MH, Schmidlin F, Coulaud J, Kassis N, Irminger JC, Kergoat M, Portha B, Homo-Delarche F, Donath MY (2009) IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci USA 106:13998–14003
- 51. Hashimoto R, Katoh Y, Miyamoto Y, Itoh S, Daida H, Nakazato Y, Okada T (2015) Increased extracellular and intracellular Ca²⁺ lead to adipocyte accumulation in bone marrow stromal cells by different mechanisms. Biochem Biophys Res Commun 457:647–652