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Abstract:

Generating the all combinations can be done in many ways, but it sometimes
difficult to arrange that combination to serve some specific purpose. This paper
introduces a special sequence that can be used to navigate the transition in the generation
of all possible combination, in order to minimize that transition cost. The obtained
ordered set can be applied to the minimum sequencing problem, such as the costume-
photograph problems, the all combination test case generating problem, and the exact
calculation of induced matrix norms problem, which requires a search of all the

combinations.
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Theorem 2: Let S be a string sequence with string s;, of length k;, i=1,2,3, ..., and m; =

1

qu and mg = 0. Let u, be the n'h term of the sequence, ajj the jth element in the string ;.
q=1
Then, fori=1,2,3,...,

n = mj_| +j, where 1 <j<k; (10)
if, and only if;

Uy = 8j (11)

Proof: From (10) we have that u, € s; and uy, is the jth term in sj. Thus (11) holds.

From (11), u,, is the jth term in sj, then u,, € s; and thus (10) holds. O

Theorem 3: The e-2 string sequence #1, of size m, has some special properties:
1. The string s; has length 211, The string aj has length 2! - 1

2. The number of terms of the sequence S, is 2™ — 1.
3. Ifuis the value of the j term of s; then u is the value of the j term of s;11 if i #
1, and the (21"1+ j)™ term of sy, ;.

4. Let uy be the nth term of the sequence, and n = 2k1(2q — 1) for some positive

integers k and q, then
u, = k.
Proof 1.: We shall prove by mathematical induction. Let length(x) denote the length of x. We
have length(s;) =1= 211 and length(aj)=1= 21 — 1. Therefore, the proposition is true for i
= 1. Suppose that it is true for 1 > 1, i.e length(sj) = 21-1. Then we have length(a;.;) + 1 =
length(sj) = 2i-1 Then,
length(a;) = length(a;_;) + length(s;) = 2l 4ol =0i_1,
Consequently we have
length(s;;) = length(a;) + 1 = 20 1+1=21;

the proposition is true for i +1. Thus 1. (in the above list) is true for all 1. 0

Proof 2.: The number of terms is the sum of the length of s;, which is as follows:

m m .
Y length(s;) = > 2" =2m 1. 0
i=1 i=1
Proof 3.: From Definition 4, we have uj = 1, and fori> 1
s; = (1, a;.1) and a; = (a;_q, ;)
Let s;; denotes the jth term of s;, for the positive integers 1, j and j < 21 We have si; =1 fori

=1,2,.... Consider s;;| = (itl, ay). For j # 1, s;; is the (j-l)th term of a;_; and consequently
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the (j-1)' term aj which is the j' term of s;;;. s is also the (21"1+ j) term of s;,;. The last
expression is true for all the positive integers i and j < 21"!. Therefore if sij=u, thensjy 1 j=u

for j # 1, and siy; (2i-14j) =u for 1 <j< 2L, )

Proof 4.: Let u, be the n'h term of the sequence Si2- Suppose that n = 2k-1(2q — 1) for some
positive integers k and q. We will demonstrate that u,, = k. Note that there always exists a

unique pair of positive integers k and q, such that the equality holds for each value of positive
integer n.

If u, is the j! term of s;, then n = 211 + j — 1. From 3. (above), u, has the same value
forn=2"1+j-1,n=21+j—1andn=2+2"1+j—1ifj= 1, and it has the same value for
n=2"land n =21+ 21

Fori2>1,ifj=1, we have u, = 1. Since n = 2i-1 = 2k-1(2q — 1), we have q = 1 and k =
i. Therefore if j = 1, the expression is true for alli>1..

If j # 1, we will prove the expression in 4. by way of induction on 1.

Fori=1,wehaven=1andu; = 1. Since | = 21-1(2(1) - 1), then by the formula up =
1. The expression is true fori= 1.

Suppose that the expression in 4. (above) is true for all n, where u,, € s;.; thatis, if n =
2i-1 4§ 1 =2k1(2q — 1) for some positive integers k and q, then u, = k. Now let u, be the
jth term of s;+1, thenn = 2i+j—1,1<j<2. Suppose thatn=21+j—1
=2k-1(2q — 1) for some positive integers k and q, if 1 <j <21, then u,, has the same value as
whenn=2"1+j— 1. Then u,, is the jth term of s;, and so we have the following:

2l o1 =241 +201 2l
=2kl2q-1)-2!
=2k-l(2q — 121k
=282 - 1)

thenu, = k.

If 21l <j<2i thenn=2+ 21 Fj* — 1, 1 <j* <21 By 3., u,, has the same value as
when n = 21"1 + j* — 1. Then u,, is the j*™ term of s;, and we have

2l gk 1 =2i4j 1 +21 _oi_2il
=2kl2q-1)-2!
=2412(q279 - 1)

thenu, = k.

Thus, the expression is true when u,, € s;;1. The proof'is hereby complete. 1

Theorem 4: The e-ni string sequence #1 has some special properties:
1. The string s; has length n; xny x ... xn; | x(n;—1)
2. The number of terms of the sequence isn; X ny x ... xn, — 1.

Proof 1.: The proof is by induction on i. Case i = 1 by (18a) we have length(s;) = n; — 1.

Therefore, the proposition is true for 1 = 1. Suppose the proposition is true for i > 1, then:
length(sj)=n; xny x ... xn; x(m—-1). ... (A)
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From (18b), we have
length(s;) = (length(a;_;) + 1) X (n; — 1)
Compare to (A), we have
length(a;.;) =n; xny x...xn; -1
Then length(a;) = length(a;_;) + length(s;)
=nyXmX...Xn—1l+nXnpx...xn_ %X Mm—1)
=npxnyx...xnx(-1+n-1)-1

= n1><n2><...Xni_1><ni—l
Also from (lgb) Si+1 = <<15 ai>l, S <1: ai>ni+1—l>
We have length(si+1) = (nj+; — 1) x (length(a;) + 1)

= (M — D xnpxmpyx...xnj xn
The case i+1 is true. Therefore
length(s;) =n; xnp x...xn; 1 x(n;—1)
is true for all i. O

Proof 2.: The number of terms is the sum of the length of's;, which is as follows:

m m
Z|ength(s,) = nl -1+ Z(nlnz...ni_l)(ni —1)
i=l i=2

m
= nl — 1 + Z(nlnz...ni_lni —nlnz...ni_l)
i=2
= npxXnyx...xn,—1 O

Theorem 1: Let S(ni, m) be defined as in Definition 1. The set S(ni, m) can be generated
from an element in that set, by a sequence of (ny X np x ... xny — 1) 1-bit transformations.

Proof: Let e; € S(ni, m) be given. The sequence e-ni combination #1 (eq, e,, . . ., eN) given
in Definition 7 is obviously a subset of S(ni, m). If we can show that all e;'s are different, then

we can conclude that these sets are the same. We will prove this by way of induction.
Let Ny =1, and for each 1> 1, N; =n; X ny x ... xn;. Assume that N; > 1 since otherwise no

change has been made.
Recall that from Definition 6:

sp=(1y, 1, oo oy Inpo1ds ap=(lp, Iy, .oy Iyop)s
and fori=2,3,..., m;
8; =L 8115 - - 5 (L A1) a; =<aj_1, Sy)-
And from Definition 7: ¢; € S(ni, m), and uj € Sy; then ej1 = Tuj(ej),j =1,2,...
Consider {ey, e, ..., ey}, wehaveu;=1forj=1,...,n; -1, since y; € sy. Then all ¢;'s are
different by the first component. The proposition is true for i = 1.
For i > 1, we make the assumption that for each ep € S(ni, m), Cps Cpt1s - -+ > Cpo1+N;,
produced by Cptj = Tuj(ep+j_1),j =1,2,...,N; -1, are different. Therefore e, e, . . ., eN;,

are different. We will show that ej's are different forallj=1,2,..., N;
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First, consider ¢;+ = Tuj(ej) where j = Nj ;. We have u; = 1, which is the first element

of s;. Therefore €+ is different from ey, forallk =1, 2, ..., N, by the ith component. This
isalsotrue forj=N;_;+1,...,N;- 1.

Note that y; € s; if and only if Nj j <j <N;
Fork=1,2,...,n;—1, we have the following:

u; € (1, aj.)x 1f, and only if, Njy + (k-1)Nj; <j <Njj +kNj.

For each k, let pi = Nj_y + (k-1)Nj_y, then up =1i. Then, for all k, e, ,, = Tupk(epk)’ they are

Pk+1
different by the i" component.
Letj=px*+q,q=1,2,...,Nj;-1, thenu; € a; ;. By assumption, all ¢;'s are different.
Thus, all ¢j's are different for j = Nj;+1, Nj1+2, . . ., N;. Consequently, all ¢j's are
different forj=1,2,..., N,
Therefore we can conclude that s(ni, m) = {eq, €, . . . , en}. The proof of Theorem 1 is
complete. M
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Minimum Cost Sequencing of All Combinations

Ampon Dhamacharoen
Department of Mathematics, Burapha University
Bangsaen, Chonburi 20131, Thailand

Abstract: Generating all combinations can be done in many ways, but it is sometimes
difficult to arrange those combinations to serve some specific purposes. This paper introduces
a special sequence that can be used to navigate the changes in transition in generating all the
possible combinations, in order to minimize the transition cost. The obtained ordered set can
be applied to the minimum sequencing problem, such as the costume-photograph problems,
the all combination test case generating problem, and the exact calculation of some induced
matrix norms problem, which requires a search of all the combinations.

Keywords: All combinations, Minimum cost sequencing, 1-bit transformation, String
sequence, e-2 sequence #1, Test case generating.

1. Introduction:

The sequencing problems involve problems relating to how to generate the ordered set
to meet some specific purposes. Problems arise in many different types of fields of research,
such as DNA sequencing in biology, tournament scheduling in games, and test case
generating in software engineering. [1, 2, 3]. Here we introduce some mathematical
sequencing problems which can be immediately applied to these interesting problems.

Consider the whole number in base 2 of three digits, running from 0 to 7 and which
are written in order:

000 001 o010 o011 100 101 110 1I11. (1)

When considering the transition in generating these numbers from left to right, i.e. from 000
to 001, the last position is changed. However, from 001 to 010, there are two positions which
are changed, and from 011 to 100, three positions are changed. Now, if we reorder them so
that the next number has one change from the previous one, we may obtain the following:

000 001 o011 o010 110 111 101  100. 2)

From 000 to 001 the last digit is changed; from 001 to 011, the second digit is changed; and
from 011 to 010, the last digit is changed. The position number (from right to left) where the
digit changes in order is 1, 2, 1, respectively. Continue this process until all the combinations
of three digits have been reached once. The positions of the changed digits are as follows:

1,2,1,3,1,2,1 3)

The set of numbers in (1) and (2) are the same selection of "all combinations", from 2 digits
into three fixed positions, but as ordered sets they are different. In transition from left to right,
(1) has 11 changes, while (2) has only 7 changes. Note that 7 is the least number of changes,
and there are many ordered sets which hold this same property. The following story may
remind us of the importance of ordered sets.
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The King, the Queen and a royal servant, are to be photographed together. Each one
has two costumes to wear, and the photographs must be taken for all the different costumes.
Therefore, a total of eight pictures are to be taken. Suppose the King, Queen and the servant
are positioned as (King, Queen, Servant), and 0, 1 are used to indicate the different costumes,
then the ordered set in (1) or (2) will serve as the sequence for this event. Since changing the
costume is costly, it is therefore obvious that sequence (2) is more appropriate than sequence
(1). If changing the King's clothes incurs the highest costs, and the servant incurs the lowest
costs, then order set (2) becomes the minimum cost sequencing.

The above example illustrates the importance of the order of the elements in the set.
The ordered set (1) will be called the natural order combination, and for some reason, the
ordered set (2) will be called the "e-2 combination #1".

To generate the e-2 combination #1, firstly begin with the m-tuple of 0's, and then
change 1 position each time, to obtain all the combinations. Selecting the position each time is
important, since all the combinations must be achieved within the least number of operations.
To do this systematically, we use the sequence of strings, which are called, "the leading
sequence", to point out which position is to be changed. For n = 3, the leading sequence for
the e-2 combinations #1 is (3) i.e. position 1, 2, 1, 3, 1, 2, 1 will be changed in order.

The aim of this research is to find the leading sequence that can generate the ordered
set of all the combinations in a desired order.

The e-ni combination:

Definition 1: Let m be a positive integer. Fori= 1,2, ..., m, let S; be a set of n; different
types of objects. The m-tuple, in which the component i is an object taken from §; is called a

combination of length m, or a string of length m. The set of all combinations of length m is
denoted by S(ni, m). If n; = n for all i, then the combination is called an e-n (exponential-n)

combination, and the set of all e-n combinations is denoted by S(n, m). (The term
‘exponential’ is a reminder that the number of elements of S(n, m) is the power of n)

The following properties are obviously seen, and their proof is omitted.

Property 1: The set S(ni, m) has ny x n, X . .. x n,, elements. The set S(n, m) has n™
elements.

Property 2: The set S(n, m) is isomorphic to a set of m-digit numbers in base n, i.e. there is a
one-to-one and onto function between them.

Definition 2: The set of m-digit numbers in base n, ordered by value from 0 to n™ is called
the natural order combination.

2. The Cost Sequencing of All-Combination Problems

Let m be a positive integer. Fori=1, 2, ..., m, let S; be a set of n; different types of
objects, S(ni, m) an ordered set of all combination (s, Sy, ..., Sy), S; € S;. N=n; xnp x. ..
X ng,, and c; the cost of replacing an element of S; in a combination, M =
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0, if i . . N(m
: ' n.o re,pacmg . The problem is to minimize the total cost > | > n;c; | over the set
1, if the replacingis made e1\io "

of ordered sets S(ni, m).

The costume photograph problem: A group of m persons will be taking picture
with different costumes belonging to each person, for all the different combinations of these
costumes. Suppose that for each person, the cost for changing all his/her costumes are the
same. Finding the sequence (i.e. who will change the costume the next time) that will
minimize the costs for changing the costumes is the costume photograph problem.

The all-combination test case generating problem: In software engineering, all
software has to be tested before it can be released to the users. Testing software can be
performed by inputting the selected test data into the input components, and then executing.
The all-combination test suit is the most efficient test suit that can be used to detect the error,
but it also the most energy-consuming since changing the data each time may be associated
with the costs (or time) [3, 4]. Therefore, the problem that arises is how to generate the
ordered set of all-combination test suits in a manner which can minimize the costs for
changing the data.

The induced matrix norm computation problems: Let A be a real m X n matrix.
When considering A as a linear transformation between two finite-dimensional vector spaces,
the induced norm of A can be defined as follows:

[Allpg = sup [[AX]lq (4)
(Xl =1

where X € R, The closed form formula for computing the value of norms for p, q = 1, 2
and oo are known [5, 6, 7]. Listed below are some norms whereby their computation concerns
all the combinations of 2 elements.

m n
Allo1 = max {21 > axjly,  whereS={-1, 1} (5)
i€ =l j=l
N e a2 172
Al = max {(X (O sia)” )}, where S = {-1, 1} (6)
i€S o ial
m n
1Alley = max [3(aix;)* 117, where S = {-1, 1} )
XjE

i=l j=1

m n n m m n
To compute these norms, the value Z| Zaijxj | in (5), Z(Z sia)” in (6) or (3] aijxj)z in
i=1 j=1 j=1 i=1 i=l j=1
(7) must be computed for each combination in S(2, m). The method for carrying out
computations with minimum costs (number of calculations) will be described in the next
section.

3. 1-bit Transformation:

Definition 3: Let C < S(ni, m). A transformation T on C is called a 1-bit transformation if
T(c) and c are different by 1 position.
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If S; has two elements, the 1-bit transformation that changes the element in position i
is denoted by T;. If S; has more than two elements, then the element of S; needs to be

specified. The 1-bit transformation which changes the element in position i to a is denoted by
T, For example, if S; = {0, 1} and the string has length 4, then T,(1100) = 1000 and

T5(1100) = 1110. If S; = {1, 2, 3} then T,3(1122) = 1322.

Theorem 1: Let S(ni, m) be defined as in Definition 1. The set S(ni, m) can be generated
from an element in that set, by a sequence of (ny X np x ... x ny, — 1) 1-bit transformations.

We will postpone the proof until the end of this section.

The string sequence:

Let S be a set of objects. , A string from S is a finite sequence of objects from S. A
string sequence is a sequence that is composed of elements of the strings. The strings in the
sequence may have a constant or variable length. The discussion relating to these topics
concerns the changing between the elements of the strings, and the terms of the sequence [8,

9]. Below, are examples of sequences of this type:
1,2,3,2,3,4,3,4,5, ... (8)
1,1,2,1,2,3,1,2,3,4,... 9)

2 > > b

(8) is the sequence of strings (1, 2, 3), (2. 3. 4), (3, 4, 5), . . . which are of equal length. (9) is
the sequence of strings (1), (1, 2), (1, 2, 3), (1, 2, 3, 4), . . . for which the length is varied.
From a sequence, the strings can be set up in many ways depending on its meaning and usage.
For convenience, let us define the type of string sequence as follows:

c-k string sequence: the sequence where the strings have a constant of length k.
n-k string sequence : the sequence where the length of string varies as a multiple of k.
e-k string sequence : the sequence where the length of string varies as a power of k.

Theorem 2: Let S be a string sequence with string s;, of length k;, i=1,2,3,..., and m; =
i
qu and mg = 0. Let u,, be the nth term of the sequence, ajj the jth element in the string s;.

q=1
Then, fori=1,2,3,...,

n = m; +j, where 1 <j<k (10)
if, and only if;
Uy = 3 (11)
Proof: From (10) we have that u, € s; and u,, is the j" term in s;. Thus (11) holds.
From (11), u, is the j" term in s;, then u,, € s; and thus (10) holds. O

Interchanging between the elements of the string and the term of sequence, can be carried out
by using formula (10) and (11).

To illustrate, let us consider an exponential-length string sequence:
1,1,2,1,2,3,4,1,2,3,4,5,6,7,8, ....
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in which the strings are (1), (1, 2), (1, 2, 3, 4),(1, 2, 3,4, 5, 6,7, 8), .. ..which are of length
2k-1 the e-2 sequence. Such sequence can be written in two-dimensional form as follows:
1

3 4
3 4 5 6 7 8

1
1
1

NS S 2\

. i .
Using (6) and (7) we have that fori=1,2,3,...,kj= 2i-1 mj = qu—l =21-1, ajj =}, for
q=1

1 <j<2Fl Thenn=2"1—-1+jand we have

u,=n-2l+1, 2Fl<n<oioq, (12)
1=1,2,3,...
The e-2 string sequence #1

Let us consider the set S(2, 4) of whole numbers in base 2 of four digits, which are
ordered in such a way that the next number has one change from the previous one:

0000 0001 0011 0010 0110 O111 0101 0100 (13)

1100 1101 1111 1110 1010 1011 1001 1000

The positions of the changed digit are
1,2,1,3,1,2,1,4,1,2,1,3, 1,2, 1 (14)

which can be viewed as an exponential-length string sequence:

1,2, 1),3,1,2,1),(4,1,2,1,3, 1,2, 1). (15)

This sequence (15) is called the e-2 string sequence #1, while (14) is called the e-2 sequence
#1. We use (14) as a leading sequence to generate the e-2 combination #1 of length 4 in (13).

Definition 4: The e-2 string sequence #1 of size m, denoted by S, is a sequence in the

form
$15 52,83, - - - » S (16)
where m is a positive integer, and s; is a string generated by the following rule:
s1= (1) ap = (1) (16a)
Fori=2,3,...,m;
8; =1, aj_1) aj = (@j_1, S (16b)

while the notation (a;_j, s;) is the sequence composed of elements in the strings a;_; and s; (not
the pair of strings a;_; and s;). The e-2 sequence #1, which is also denoted by S, is a
sequence whose terms are from elements of the e-2 string sequence #1.

The reader may easily verify that for m = 4, (16a) and (16b) produce (14). Note that
from the definition, the first term of s; is 1, for all positive integer 1.

Theorem 3: The e-2 string sequence #1, of size m, has some special properties:
1. The string s; has length 21!, The string a; has length 2! - 1
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2. The number of terms of the sequence S, is 2™ — 1.
If u is the value of the j term of s; then u is the value of the j term of s;, if j #
1, and the (21"1+ j)™ term of sy, ;.

4. Let u, be the n'h term of the sequence, and n = 2K'1(2q — 1) for some positive

integers k and g, then
u, = k. (17)

Proof 1.: We shall prove by mathematical induction. Let length(x) denote the length of x. We
have length(s;) =1 = 21-1 and length(a)) =1 = 2! — 1. Therefore, the proposition is true for i
= 1. Suppose that it is true for 1 > 1, 1.e length(s;) = 211, Then, from (12b), length(a;.;) + 1 =
length(s;) = 2i-1 Then,
length(a;) = length(a;_;) + length(s;) = 2l 4ol =0i_
Consequently we have
length(s;, ) = length(a;) + 1 =21 — 1 + 1 =2};
the proposition is true for i +1. Thus 1. (in the above list) is true for all i. O

Proof 2.: The number of terms is the sum of the length of's;, which is as follows:

m m .

length(s;) = S2'1 =2m _ 1, 0
Z gth(s;) Z
i=1 i=1

Proof 3.: From Definition 4, we have u; = 1, and fori> 1

s; = (1, aj.1) and a; = (a;_p, s
Let s;; denotes the jth term of s;, for the positive integers 1, j and j < 2i-1. We have sjp =1for1
=1,2,.... Consider sj;; = (it+l, aj). For j # 1, s;; is the (G-D™ term of a;_; and consequently
the (j-1) term a; which is the j term of sy, . sjj 18 also the 2114 )t term of ;4. The last
expression is true for all the positive integers i and j < 2"1. Therefore if sij = u, then s;1 j=u

fOI'j =1, and Si+1’(2i-l+j) =ufor 1 Sj < 2i-1. 0

Proof 4.: Let u, be the n'h term of the sequence S Suppose that n = 2k-1(2q — 1) for some
positive integers k and q. We will demonstrate that u,, = k. Note that there always exists a

unique pair of positive integers k and q, such that the equality holds for each value of positive
integer n.

If u, is the jth term of s, then n = 21 +§ — 1. From 3. (above), u,, has the same value
forn=2"1+j-1,n=21+j—1andn=2+2"1+j—1ifj# 1, and it has the same value for
n=2"land n =21+ 211,

Fori>1,ifj=1, we have u, =1. Since n = 2l = 2k-1(3q — 1), we have = 1 and k =
1. Therefore if j = 1, the expression is true for all i > 1..

Ifj # 1, we will prove the expression in 4. by way of induction on i.

Fori=1,wehaven=1andu; = 1. Since | = 21-1(2(1) = 1), then by the formula u =
1. The expression is true fori= 1.
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Suppose that the expression in 4. (above) is true for all n, where u,, € s;.; thatis, if n =
214§ — 1 = 2k1(2q — 1) for some positive integers k and g, then u, = k. Now let u, be the
jt term of s;;q, then n=21+j— 1, 1 <j < 2L Suppose that n=2i+j— 1
=2k-1(2q — 1) for some positive integers k and g, if 1 <j < 211, then u,, has the same value as
whenn=2"1+j— 1. Then u,, is the jth term of s;, and so we have the following:
2l o1 =241 +2F1 2l
=2kl2q-1)-2!
=2k-l(2q — 121k
=282 - 1)
thenu, = k.
If 21l <j<2i thenn=21+21 Fj* — 1 1 <j* <21 By 3, u,, has the same value as
when n = 21"1 + j* — 1. Then u,, is the j*™ term of s;, and we have
2l g% 1 =20+ 1 +20-1 _2i_2i]
=2kl2q-1)-2!
=282 - 1)
thenu, = k.
Thus, the expression is true when u,, € si;+1. The proof is hereby complete. [

Definition 5: Let ¢; € S(2, m), and S;;, be the e-2 string sequence #1 of size m, Ty, a 1-bit
transformation, k € Sy,, N =2™. The sequence {cy, ¢y, . . . , en) where ¢ = Ty (c), i =1, 2,.

.., N-1, is called the e-2 combination #1 generated by c;.

Corollary: The e-2 combination #1 is the ordered set of all the combinations, with the least
number of transition changes.
Proof: Follow from Theorem 4 that S(2, m) = {cj, ¢y, . . . , cN}, Which is all the

combinations. The number of transitions from c| to ¢y is N — 1, which is the minimum

number of transitions required. O

The e-ni string sequence #1
Now we generalize the string sequence in order to generate the e-ni combination
ordered set.

Definition 6: Let m, ny, ny, . . ., n,, be positive integers. The e-ni string sequence #1 of size
m, denoted by S,;, is a sequence in the form:
1552583, - - 5 S (18)
where m is a positive integer, and s; is a string generated by the following rule:
sp=(1y, 1, ooy Igpop) ap =1y, 1o,y 1) (18a)

(s;yand aj hasn| — 1 terms of 1's)
Fori=2,3,...,m;
si =L a1y - -5 (b i D) a; = (aj.1, 8j) (18b)
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where the notation (a;_j, s;) is the sequence composed of the elements in the strings a;_; and s;
(not the pair of strings a;_; and s;). The e-ni sequence #1 is the sequence whose terms are from
the e-ni string sequence #1, and which are also denoted by S, ;.

Theorem 4: The e-ni string sequence #1 has some special properties:
1. The string s; has lengthny xnp x ... xn;_;{ X (n;—1)
2. The number of terms of the sequence isny X ny x ... xn, — 1.

Proof 1.: The proof is by induction on i. Case i = 1 by (18a) we have length(s;) = n; — 1.
Therefore, the proposition is true for i = 1. Suppose the proposition is true for i > 1, then:
length(s)) =n; Xnp x...xXn_1 x(;—1). ... (A)
From (18b), we have
length(s;) = (length(a;_;) + 1) X (n; — 1)
Compare to (A), we have
length(a;.;) =n; xny x ... xn; -1
Then length(a;) = length(a;_|) + length(s;)
=nyXmX...Xn—1l+nXnpx...xn_%XMm—1)
=npxnyx...xnx(-1+n-1)-1

= n1><n2><...Xni_1><ni—1
Also from (18b) Si+1 = (L apps - -+ (L app., 1)
We have length(s;+;) = (nj+; — 1) x (Iength(a;) + 1)

= (ni+1—1)><n1><n2><...Xni_1><ni
The case i+1 is true. Therefore
length(s;) =n; xny x...xn;1 X (n;— 1)

is true for all 1. 0

Proof 2.: The number of terms is the sum of the length of's;, which is as follows:

m m
Y length(s;) = n; — 1 + Y (nyny..ny )(n; 1)

i=1 i=2
m
=n;—1+ > (nn,.ngn;-nmny.n; )
i=2
= npXnpX...xXn,—1 0

Definition 7: Let e; € S(ni, m), and S;,;; the e-ni sequence #1 of size m, T, a 1-bit

transformation, u; € S, N =n; X ny X ... xn,. The sequence (ey, €, . . . , eN) Where e;;
= Tui(ei), i=1,2,...,N-1,is called the e-ni combination #1 generated by e;.

Since for some i, S; has more than two elements, therefore, in order to avoid
ambiguity while performing the 1-bit transformation, the elements of S; must be ordered so
that the change at the position 1 can be carried out in a one directional circle..

Example: Let m=3,S;={1,2,3,4},S,={1,2,3},S3={1,2},e; =111
We have N =4 x 3 x 2 =24,
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Ssi=1,1,1,2,1,1,1,2,1,1,1,3,1,1,1,2,1, 1, 1,2, 1, 1, 1
(Component count from right to left)

e-ni combination #1 = 111,
112, 113, 114, 124, 121, 122, 123, 133, 134, 131, 132, 232, 233, 234, 231, 211, 212,
213,214, 224,221,222, 223

Prove of Theorem 1:
Let e; € S(ni, m) be given. The sequence e-ni combination #1 (e}, €, . . . , eN) given
in Definition 7 is obviously a subset of S(ni, m). If we can show that all e;'s are different, then

we can conclude that these sets are the same. We will prove this by way of induction.
Let Ny =1, and for each 1> 1, N; =n; X ny x ... xn;. Assume that N; > 1 since otherwise no

change has been made.
Recall that from Definition 6:

81:<11, 12,. cey 1n1_1>, 31:<11, 12,..., 1n1_1>,
and fori=2,3,...,m;
8; =L 81015 - - -5 (b A1) a; = (aj.1, sy)-

And from Definition 7: ¢; € S(ni, m), and uj € S,; then ejy = Tuj(ej),j =1,2,...
Consider {ey, €, ..., ey}, wehaveu;=1forj=1,...,n; -1, since y; € sy. Then all ¢;'s are
different by the first component. The proposition is true for i = 1.

For 1 > 1, we make the assumption that for each ep € S(ni, m), €ps Cpt1s - - - » Cp-1+N;,
produced by Cptj = Tuj(ep+j_1), 1=1,2,...,N;-1, are different. Therefore e, €5, . . ., eN;,
are different. We will show that ej's are different forall j=1,2,...,N;

First, consider ¢; = Tuj(ej) where j = Nj ;. We have u; = 1, which is the first element

of s;. Therefore €+ is different from ¢y, forallk =1, 2, ..., N, by the ith component. This
isalso true forj=N;_;+1,...,N;- L.

Note that u; € s; if and only if Nj; <j <N;.
Fork=1,2,...,n;—1, we have the following:

u; € (1, aj.)¢ 1f, and only if, Njy + (k-1)Nj; <j <Ny +kNj;.

For each k, let py = N + (k-1)Nj_y, then u, = i. Then, for all k, e, = Tupk(epk)’ they are

Pk+1
different by the i" component.

Letj=px+q,q=12,...,Nj;-1, thenu; € a; ;. By assumption, all ¢;'s are different.
Thus, all ¢j's are different for j = Nj;+1, Nj1+2, . . ., N;. Consequently, all ¢j's are
different forj=1,2,...,N;.
Therefore we can conclude that s(ni, m) = {eq, €5, . . ., en}. The proof of Theorem 1 is
complete. 0
4. Application:

Solution for the all-combination cost sequencing problems
Let us consider the costume-photograph problem, and the all-combination test case
generating problem, as defined in Section 2:
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N(m
Minimize the total cost Z[anl IJ over the set of ordered sets S(ni, m).
k=I\i=l
Suppose that ¢} < cp <. .. , then the problems already have a solution: the e-ni
combination #1 (e, ey, . . ., eN>, as described in the earlier section. The total costs are the

setting costs for e, and the operating (changing) costs in transition. Since there is only one

change in each transition, the cost can be calculated by counting the total number of changes
in each component, times the cost, and adding these totals up to obtain the total cost. Using

the e-ni sequence #1 to navigate the change, the number of total changes in the i component
are:

q = (ng-1) xmpy x ... xnp,
qp = (np-1) X n3 x ... xnpy

m
Then, the total costis C + ) q;c; , where C is the setting cost.
i=1

m
Note that the total number of changes is > q;c; =n; Xnp ... xny, — 1.
i=l

Computation of the induced matrix norm problems:

We will describe the method to calculate the value of the norm in (5) by using the e-2
combination #1. The algorithm to compute (6) and (7) will be analogous to that of (5).
m n
To evaluate ) | Zaijx j|, since the values are in absolute value, we only need to
i=1 j=1
compute half of all the combinations, i.e. the combination of (n-1)-tuple are needed. This can
reduce the number of e-2 combination #1 to 2™-!, instead of 21.
The number of operations in the computation can be reduced by firstly computing
such values for a particular combination, and then for the next combination, we compute only
at the changed component, and add or subtract from the old values.

In computing by using the conventional method, we proceed as follows: For each k =

m

1,2,...,2%! we calculate the value of M; = Zau i»1=1,2,...,m,and then find ) |M;]|.
j=1 i=1

Using this formula, the number of multiplications is mn, and the number of additions is mn —

1. Subsequently, for all k, it is necessary to carry out mn 2™! multiplications and (mn — 1)22-!
additions.

Using the e-2 combination #1, we can compute such value using less effort. In

x ; for all 1 where x;

computing of M; = Zau i ;

j=1

€ S, we first generate the e-2 sequence #1 and

start with the value of M; = iaij .Fork=1,2,...,201 1, let j be the kth term of the
=
sequence, replace x; by -x;, then compute:
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M;=M; + 2xjaij
i1=12 ..., m (The value 2a; can be set prior, in order to avoid repetition of the

m
calculation.) Then, compute ) |M; |.
i=1

Using this method, the number of calculations will be 2mn + m(Q™! — 1)
multiplications, and mn — 1 + (2m — 1)(2™! — 1) additions.

Compared to the conventional method, using the e-2 combination #1 can reduce the
number of calculations by m((2™! — 1)(n — 1) — n) multiplications and m(n — 2) ™! — 1)
additions.

5. Conclusion:

The sequence of string be defined in a certain way, in order to obtain the sequence that
can navigate the changes in transition when generating the ordered set of all combinations,
which is the solution for the all combination minimum cost sequencing problem. The method
of calculation concerning the all-combination constructed based on that special sequence can
reduce the number of calculations as compared to using the conventional method. The
sequence may look easy for the first few terms, but generalizing such a manner is not quite so
easy. The method to construct such a sequence is given here, and its properties were proved in
general. The problem may be viewed as being similar to the traveling salesman problem [10],
and the proof of Theorem 1 could be carried out in another way. However, the proof given
here can provide information on how to generate the path, which is useful in applications.

There are more interesting problems concerning all the combination searches. The
examples proposed here, may be considered as open problems:

Problem 1. The costume-photograph problem: A group of m persons will take photos
with different costumes belonging to each person, for all different combinations of costumes.
The costs of changing the costume for each person are different, depending on the types of
costumes. The problem is to minimize the cost of changing the costumes for all the
combinations of pictures.

Problem 2. The duty-balancing problem: Given a situation which is the same as the
costume-photograph problem. However, now the costs of changing the costumes are all equal,
and each person does not want to change the costumes too many times. Therefore, the
problem is to find the ordered set of all combinations in such a way that the number of
changes in each component is different than the other by at most one.

This problem may occur in assignment problems, or switching problems, where the duties
are devices in an electronic circuit, which should be balanced to avoid overloading some
devices.

Note: The following are some solutions for Problem 2:
For S(2, 3): The solution set is 000, 001, 011, 111, 101, 100, 110, 010
The number of changes in component 1, 2, 3 is 2, 3, 2 respectively.
Note that the total number of changesis 2 +3 +2=7.
For S(2, 4): The solution set is 0000, 0001, 0011, 0111, 1111, 1101, 0101, 0100,
1100, 1000, 1001, 1011, 1010, 1110, 0110, 0010
The number of changes in component 1, 2, 3, 4 is 4, 3, 4, 4 respectively.
Note that the total number of changes is 4 + 3 + 4 +4 = 15.



30

Acknowledgments
The author would like to thank the referees for their comments. This research was supported
by the Research Fund from the National Research Council of Thailand

References
[1] Fang, S-C, Yong Wang and Jie Zhong, A Genetic Algorithm Approach to solving
DNA Fragment Assembly Problem, Journal of Computational and Theoretical
Nanoscience, Vol. 2, 1-7, 2005.

[2] Dhamacharoen, A. Round Robin Tournament Scheduling and Test Case
Generating, The 5 International Joint Conference on Computer Science and
Software Engineering (JCSSE2008), Silapakorn University, Thailand 2008,

p. 414 —418.
[3] Jorgensen, Paul C., "Software Testing: Craftsman’s Approach", 1995, CRC Press,
ISBN 0849308097

[4] Phadke, Madhav S., “Planning Efficient Software Tests”, Phadke Associates, Inc.

http://www.stsc.hill.af.mil/crosstalk/1997/. 10/planning.asp

[5] Dhamacharoen, A., Exact Calculation of Some Induced Matrix Norms,
will be appeared.

[6] Drakakis, K., On the Calculation of the I, — |; Induced Matrix Norm,

International Journal of Algebra, Vol. 3, 2009, no. 5, 231 — 240.
[7] Rohn, J., Computing the Norm ||a||cc.1 is NP-Hard. Linear and Multilinear
Algebra, 47, 2000.

[8] Petrenko, A. and A. Simdo, Checking Sequence Generation Using State

Distinguishing Subsequences, ICSTW 09 Conference on Software Testing, April
2009.

[9] Kohavi, I. and Z. Kohavi, Variable-Length Distinguishing Sequences and Their
Application to the Design of Fault-Detection Experiments, IEEE Transaction on
Computer, August 1968.

[10] Schrijver, A., "A course in Combinatorial Optimization", Department of

Mathematics, University of Amsyerdam, Plantage Muidergradht 24, 2018
TV, Amsterdam, The Netherlands.




31

t:' o a o
mnmmmzuﬂﬂmwuwimﬁmi

A A
13990 2

o a d a J
mimu’Jmﬁmﬁ'mwmumummmmﬂcu‘mamm

Exact Calculation of Some Induced Matrix Norms

Tag

3.8, A3, 9I1NA HITNDIY

MAIVINAAMNAAT AUZINGIMEAT UHIINGITOYTN



32

Exact Calculation of Some Induced Matrix Norms

Ampon Dhamacharoen
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Abstract: This paper will investigate the induced matrix norms of linear operators between
finite dimensional vector spaces. In the past, the closed form formulas for [|Al|,; were known

for some p, q = 1, 2, oo, but not for ||Al|p,, and ||A]|.p. The formulas for these two norms and
for ||Al|p; are derived in this paper. The computation of ||Al>1, ||All and ||A]|, are generally

difficult, since they concern all the combination arrangements of objects. The algorithms
developed here, can provide the exact numerical value, with the least amount of calculations.

Keywords: Matrix norm; Induced matrix norms; Norm computation.

1. Introduction:

Let R™ be the vector space of n-tuple of real numbers over a field of real numbers. T:R?—>R™
is a linear operator defined by T(X) = AX, where A = [ajj] i, 18 @ matrix with real entries, and
X=[X; X ...x,]Tisa vectorin R" written in the matrix form. The matrix p-norm can be
defined for p > 0 as follows:

Tl = Sup TGOl weeereeeeerieieecieieeecsieecces (1)

(X[ =1
If p <1, the function || - [|, lacks triangle inequality, and may be called a semi-norm. For

convenience, we will write ||A| instead of ||T||. The normed values, when p = 1, 2 or o, can be
calculated through the given formulas below:

A = max {30y} @)
S

Al = max {3 a1} 3)
<i1<m j=1

Al = 2, (4)

where A is the largest eigenvalue of A*A.

These formulas are well known and can be found in most matrix theory or numerical
analysis text books(e.g. [1]). However, for the other value of p, the closed form formulas of
the norms are not known.

Suppose the operator T has been defined according to different normed spaces, i.e.,
from lp to lq, then the induced matrix norm can be defined as follows:

Tlipg = Sup ITOOlG  weveeerereermreieiee e (5)

IXlp=1

These norms are a generalization of (1), or (1) can be viewed as a special case of (2) if p=q,
and therefore, we write |||, instead of [T|[,,. In finite dimensional vector space, the



33

supremum is the maximum. The closed form formula for computing the value of norms for p,
q=1, 2 and o are known, and are listed below:

[Alljo = max [[AX]l, = = max {[al} (6)
X[ =1 1<i<m,I<j<n
1Al = maxlllAXII1 = mg{ZlZa.,xJ |} where S={-1, 1} (7)
0= Xj i=l j=1
1Alliz = max JAX = mx za., )2 (8)
1=1 SIS
L 12
1Al = maxlllAXIIl = rsngg{ Y O siagp)?)?), where S={-1,1}  (9)
2 i j: i=1
m n
IAlle = max, A2 = max [2,(2ai%;) *1'2 where S = {-1, 1} (10)
oo~ i€ = =l
Allry, = AX|l, = 2yl 11
1All200 Hﬂ?@ﬁ” lo = 123;(1(]21&” (11)

(6) and (7) appeared in Rohn [2]. (8) and (9) appeared in Drakakis [2], with a different
form:

PN maX{HSTAHz} where sT=[sys... sp], S={-1, 1}, (12)
eS

and also (8) was proved in general for0<p<1<q:
A = max {||aill,},
[Allpg max. {lallqs

where a is the jth column of A. Drakakis also gave the formula (10) |Allep = ||AT||12’ which

is incorrect. (10), (11) and (9) are derived here in the next section, using a geometric
approach.

Although the formulas are in a closed form, the computation concerning all the
combination searches is still difficult, since they require huge amount of work [3, 4]. The
formula (7), (9) and (10) are of this type. In Section 3, we will introduce algorithms for
computing such values, which will save some energy.

2. Derivation:

Although formula (9) was proved in [3], the derivation is somewhat difficult, but also
motivating and challenging, and so we will redo the proof here using a geometric approach.

In a rectangular axis, the graph of the equation ax + by = ¢ is called a line, a plane in

n
3-dimensional, and for more than 3-dimensional vector spaces, the graph of ) a;x; = ¢ will
i=1

n
be called a hyper-plane. The graph of fo = a2 (or IX||» = a) 1s a hyper-sphere center at the
i=1

n
origin with a radius a, the graph of ) |x;| =a (or ||X||; = a) is a hypercube center at the origin
i=1
and vertices on the axis, and the graph of max {|x;|} = a (or ||X||., = a) is a hypercube center at
I<i<n

the origin, which faces perpendicular to the axis. The following properties are well known in
three dimensional space, but these are also true for higher dimensional spaces.
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1. An n-space hypercube has 2n faces, and 2" corner points (vertices).

2. A vector perpendicular to the hyperplane > a;x; =cis(aj, ap, ..., a,).

i=1

3. The minimum distance from the origin to the hyperplane > a;x; =cis ¢l The
i=1

minimum point is X = (X}, Xp, . . . , X,) When Xj = naj c,j=1,2,...,n
Y ai’
i=1
Now we are ready to show the proof of some of the formulas:
n m
Proof of (9): IAllp1 = max {( Y. (> siaj)* )2}, where S = {-1, 1}.

S|€S le i=1
Proof : By Definition (5)

m n
|All1 = max [JAX|[; = max >’| > ajXj |

[IX[l2=1 IX2=1j=1 j=1
m n m n n
Consider 212 axjl = 208D aijXj, where s;=sign( Y gjjXj ), oeeeeeeiiiiiiiiin (A)
i=l j=I i=l  j=1 ol
n m
= ZXJ siaij .......................... (B)
j=1 =l

n

Since we do not know the sign of »" a;x; in advance, we therefore have to search for the
j=1

maximum of (B) over the set {(sy, sy, .. ., s)}, where s; € {-1, 1} and [[x||; = 1. For each (s,

Sy, . . ., Sp) the equation i Xj isi ajj = C can be viewed as a hyper-plane in the space R™> and
j=1 =l

IIX|l, =1 is a unit hyper{sphere center at the origin. The tangent point of the plane to the

sphere is the maximum value of C, which occurs when vector X is perpendicular to the plane.

Therefore at this point, we have x; = kisiaij ,j=1,2,...,n Demanding |X||, = 1 will yield

the value of k, so that -

m
2.Si ajj
i=1

X Xsiaph'”?

j=1 i=1

j=1,2,...,n

Xj:

n m
Substitute in (B), we have C = (3 (Y sia;)?)"'? = [|sTAl|;. Maximizing these values over the
i

set {(S1, 82, - - - » Sp)}, Where s; € {-1, 1} will yield the maximum, as desired. 00

m n
Proof of (10): [Allp = max [ O ayx)? 12 where S = {-1, 1}.
Xj€2 =l =l
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Proof: By Definition (5)

Allo2 = HHHIaX 1AX][ = ‘n‘lax (Z(Zau i) )1/2-
o0 00 i=l j=l1

We claim that the maximum point must lie on one corner of the hypercube |x||; = 1, i.e. all

the components of X must be 1 or -1. To verify this claim, we will proceed to prove that at the
point z, not on the corner of that hypercube, the maximum is not attained. Let X and y be the

vectors in R™ such that all the components are x:, yj € {-1, 1}, so that [[X||, = [yl = 1
Let z=2AX+ (1-A)y where A € [0, 1]. We have that ||z||., < 1, and

m n 5 m n )
2. gz = 2 (X a(xj +(1-1)y))

i=l j=1 i=1 j*l

= Z(xZa,JxJ +(1- x)z a,JyJ

i=1 11

z(x(Za., )’ +<1—x)(zai,-y,-)2>
i= j=1

I/\

m n
7»2<Zai,-x,-)2+(1—x)2(2ai,-y,-)2

i=l j=I i=1 j=I

The inequality is valid since the square function is convex. Now, suppose that K =
m n m n
Z(z ainj )2 > Z(Z aijyj)2 , then
i=l j=I i=l j=1

m n 2 m n 2

Z(Zauz]) < AK+ (l-k)K: KZZ(zaUXJ) .

i=l j=1 i=l j=1
That is, the maximum must be attained at the corner of the unit hypercube. Therefore (10) is
valid. 00

n
Proof of (11): 1Al = max (Y a;?)"?.
ISiSm J:l

Proof : By Definition (5)

n
[All20 = max [[AX]l; = max max {IZa,JxJ I
lIXIl2=1 [IXllp=1 1<i<m

n

Consider the hyper-plane Z ajjx; = C,i=1,2,...,m,|C has a maximum value over the
j=1

unit sphere ||x||; = 1 at the tangent point, which occurs when vector X is perpendicular to the

a..
plane. Let x; = — Y j=1,2,...,n,then we have IIX|l, = 1. If we substitute this value in
2,172
(> aj)
j=1
- & 212 .
the above expression, we have ||A||r, = rgegr(n {(Zlaij )<}, as desired. 0
sism 2

3. Calculation method:
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This section introduces the method to compute the exact value of some matrix norms
which required "all combination searches". (See Dhamacharoen [5]).
Firstly, we first introduce the all combination search of n-tuple on the set {0, 1}. For n

=3, we have 23 = 8 combinations, which are listed below:

000 001 010 011 100 101 110 111 ©)
This set is a list of the numbers in base two from 000 to 111, which are written in order, and
which represent "all combinations" of selection of 2 digits into three fixed positions. The
following set is the same set as shown above, but which have been arranged in a different
order:

000 100 110 010 011 111 101 001 (D)
In the process of digit changing from left to right, in (C) from 000 to 001, the first position is
changed, but from 001 to 010 there are two positions changed, and 3 positions changed from
011 to 100. The total number of positions changed is 11, while in (D) the total number of
positions changed is 7.

The above example illustrates the importance of ordering the elements in the set. The
ordered set in (C) will be called the natural order combination, and for some reason, the
ordered set in (D) will be called the "e-2 combination #1".

To generate the e-2 combination #1, begin with the n-tuple of 0's, and then change 1
position each time, in order to obtain all the combinations. Selecting the position each time is
important, since all the combinations must be achieved within the least number of operations.
In order to do this systematically, we will use a sequence called the "e-2 sequence #1", to
point out which position is to be changed. This is sometimes called the leading sequence,
since we use it to navigate in order to generate the all combination ordered set. The leading
sequence for the e-2 combinations #1 is (1, 2, 1, 3, 1, 2, 1); that is, the position 1, 2, 1, 3, 1, 2,
1 is to be changed in order.

Definition 1: The e-2 string sequence #1 is a sequence in the form:

P:<p1’p2" . '9pn>
where p; is the string generated by the following rule:

p1 =<(D) by =(1)
Fori=2,3,...,n;
pi = (i, b b; = (bi_1, py

where the notation (b;_;, p;) is the sequence composed of the elements in the strings b;_; and p;
(not the pair of strings b;_; and p;).
The e-2 sequence #1 is the sequence of terms from the e-2 string sequence.

Theorem 3.1: The e-2 string sequence #1 has some special properties:
1. The string p; has length 21!
2. Let uy be the kth term of the e-2 sequence #1. If k = 2P1(2q — 1) for some positive

integers p and q, then
U = p- (1 3 )

3. If nis the number of strings in the e-2 string sequence #1, then the number of

terms of the e-2 sequence #1 is 2™ — 1.
The proof can be found in [4], and will be omitted here.
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Definition 2: Let S = {t;, to}. The ordered set of n-tuple s; = (i1, Sigs - - - » Sin)s 1=1,2, .. .,
m, where sij € S and m = 21, is called the e-2 combination. The e-2 combination #1 is the
ordered set generated by the rule:

Sq :(tl, tl, ce ,tl)

Si+1 :Pi (Si), 1= 1, ey m-1.
where P; is the function that changes the component s;,,., u; € P in definition 1, so that it is the

other element of S. We also say that the e-2 combination #1 is generated using P as a leading
sequence.

Theorem 3.2: The e-2 combination #1 is an ordered set of all combinations, with the least
number of transition changes.

The proof can be found in [5]. Note that the number of combinations for selecting the
object from the set of two kinds of elements, which are to be put in n different position, is 2".
From constructing the set, we find that the ordered set has 2" elements, and the number of

changes is 2" — 1, which is the least number of changes. Showing that all the elements are
different will prove the theorem.

Computation of Norms:

In this section, we will describe the algorithm to calculate the value of the norms in
(7), (9) and (10) using the e-2 combination #1. Since the values are in absolute value, we only
need to compute half of all the combinations; i.e. the combination of (n-1)-tuple are needed.

This reduces the number of e-2 combination #1 to be 2%-! instead of 21.
n

If, foreach k=1, 2, . . ., 2™1. we calculate the value of Mj= Y ays;,1=1,2,...,m,
=1

using this formula, the number of multiplications is mn, and the number of additions is m(n —

1)+ m - 1. Then for all k, it will do mn 2™ multiplications, and (mn — 1)22-! additions.
Using the e-2 combination #1, we can compute such value using less effort. In

n
computing M; = >'a
=1

jsj for all i, where s; € S, we first generate the -2 sequence #1 and start

with the value of M; = » a;;. Then fork=1,2,..., on-l ) let j be the kth term of the
=
and we compute as follows:
M;=M; + ZSjaij
i=1,2,..., m (The value 2a;; can be set prior, in order to avoid repetition of calculation.)

sequence, then 8j = -Sjs

Using this method, the number of calculations will be 2mn + mQ™! — 1)
multiplications, and mn — 1 + (2m — 1)(2™! — 1) additions.

Now, we calculate (7), (9) and (10) using the e-2 combination #I.

m n
Algorithm 1 (For (7)): A1 = max {21 > ajxj|} where S = {-1, 1}.
Xj& =l j=1
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Givenm,nandaij,iZI,Z,...,m;j=1,2,...,n.LetN=2n'1.

1. Generate the e-2 sequence #1 (1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,..., 1) of length
on—-1_1,

2. Forj=1,2,...,n,Letxj=l.

3. Letbij=2aij,i=1,2,...,m;j=1,2,...,n.

n
4. Fori=1,2,...,m, compute M; = Zaij .
=

m
5. Compute sum; = > |M;|
i=1

6. Fork=1,2,3,...,N-1, let u, be the kth term of the sequence in 1; letj=n—uy + 1.
6.1 Let Xj = =X;
6.2 Fori=1,2,...,m
My = My + xjbj;
m
6.3 Compute sumy; = > [Mj|.
i=1

7. Let Max = maximum{sumyj, sumy, . . . , Sumyg}.

Then ||A]|; = Max. O

Algorithm 2 (For (9)):  [/Allzy = max (3 S siay? )2}, where $ = {-1, 1},

i€S o1 ial
LetN=2“'1.Givenaij,i=1,2,...,m;j=1,2,...,n.
1. Generate the e-2 sequence #1 (1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,...,1) of length
pm-—1_7,
2. Fori=1,2,...,m, Letx;=1.
3. Letbij=2aij,i=1,2,...,m;j=1,2,...,n.

4. Forj=1,2,...,n, compute My; = D aij -
i=1

n
5. Compute sum; = (Y M,;;? )12
j=
6. Fork=1,2,3,...,N-1, let u, be the kth term of the sequence in 1; leti=n—ug + 1.
6.1 Let Xj = -Xj
6.2 Forj=1,2,...,n
Mkj = Mkj + Xibij ,
n
6.3 Compute sumyq = (X My,;;° )12
j=1
7. Let Max = maximum{sumj, sumy, . . . , Sumyg}.

Then ||All»1 = Max. 0
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Algorithm 3 (For (10)):  [|Ally = max [i(iaijxj)z]l/z where S = {-1, 1}.

i€ =l =l
LetN=2“'1.Givenaij,i=1,2,...,m;j=1,2,...,n.
1. Generate the e-2 sequence #1 (1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,...,1) of length
-1,
2. Forj=1,2,...,n,Letx;=1.
3. Letbij=2aij,i:1,2,...,m;j=1,2,...,n.

n
4. Fori=1,2,...,m,compute M;; = Zaij .
=l

S 1/2
5. Compute sum; = (> M;?)
i1

6. Fork=1,2,3,...,N-1, let u, be the kth term of the sequence in 1; let j=n—u + 1.
6.1 Let Xj = -Xj
6.2 Fori=1,2,...,m
My = Mjy +xjbj;
m
6.3 Compute sumy;; = (> My,,2 )12
i=1
7. Let Max = maximum{sumj, sumy, . . . , Sumyg}.
Then ||A]|x; = Max. O

Example: Let A be a 3 x 2 matrix, B a 3x4 matrix, given by:

-1 3 2 -1 0 3
A=14 1 B=|1 1 -2 2
2 -1 -3 1 -2 -2
By Algorithm 1., ||All,,; = 10 IBllooy = 14
By Algorithm 2., |[|A]lp1 =7.61577 IIBllr1 =9.273619
By Algorithm 3., ||A||,> = 5.83095 |Bllecp = 10

4. Conclusion:

The induced norms for a matrix of linear transformation between finite dimensional
spaces were defined, and their computation formulas were derived. The formulas in (10) and
(11) are believed to have first appeared here in this paper. The formulas (9), (10) and (11) can
be derived using the concepts of cube, plane and sphere from analytic geometry.
Computations of some norms are generally difficult, since they involve the all combination
search. Here, we have generated an ordered set of all the combinations in a special way, so
that the computation following that set can provide an exact solution, which will require the
least amount of computation.
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