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บทคัดย่อ (Abstract) 
 

 The combined use of trucks and drones in last-mile delivery offers a more efficient and 
faster way to make deliveries from an operational standpoint. In this paper, we propose a new 
routing model that combines different vehicle fleets, including hybrid trucks, traditional trucks, 
and large drones, to deliver packages from a depot to different destinations cooperatively. This 
research will give us a better understanding of this drone logistics application, particularly in 
routing optimization. It can be further implemented to mitigate the impacts of natural disasters, 
mainly earthquakes, flooding, and landslides. This research aims to study the possibility of using 
drones to deliver relief supplies such as food, water, and medicine for humanitarian purposes 
during natural disaster periods to find the best possible route to directly reach the destination 
and minimize the flying time in the air. We develop a Mixed Integer Programming (MIP) formulation 
to solve the I-VRPD optimally on a simulated small-scale problem and conduct a case study in 
one of the most affected regions by natural disasters. The numerical analysis demonstrates an 
improvement in the delivery time using three experiments that include testing the model on a 
set of benchmark problems and a case study based on the actual scenario. The results show that 
the delivery time of the proposed model with the integration of three types of vehicle fleets can 
outperform the operation performed by a single-vehicle fleet by a significant percentage. 
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Chapter 1 
Introduction 

 
1.1 Introduction 

 In the last half-century, Thailand has been impacted by natural disasters that have killed 
and injured countless thousands and economically destroyed residential property and 
infrastructure. Typical natural disasters occurred in Thailand include floods, droughts, tropical 
storms, tsunamis, forest fires, landslides, earthquakes, and hailstorms, etc. Many organizations, 
both private and public, collaborate in mitigating such threat, monitoring disaster situation, 
responding and managing the situation, and providing assistance and relief in the immediate 
aftermath of a disaster. In this modern age, various technologies can help reduce the impact of 
natural disasters by presenting the opportunity to expedite and magnify the impact of 
humanitarian relief efforts through greater efficiency and responsiveness; reaching more people, 
sooner, more cost-effectively, and saving more lives.  

 Unmanned aerial vehicle (UAV) or drones are one of the most promising and powerful 
new technologies to improve disaster response and relief operations. Drones naturally 
complement traditional manned relief operations by helping to ensure that operations can be 
conducted safer, faster, and more efficiently. In the past, drones are used to provide emergency 
support team by providing the precise locations of the victims and monitoring the situation closely 
which enhances the team’s ability to evaluate the situation with the proper response. However, 
not many studies have been done in the domain of the natural disaster logistic and humanitarian 
delivery using drones. Drones have advantages of speed and flexibility which allow them to access 
unreachable areas caused by destruction of the disasters. Thus, it will be ideally beneficial to use 
them for delivering food and relief supplies during emergency situation.  

 This research aims to study the possibility of using drones to deliver relief supplies for the 
humanitarian purpose during natural disaster period with the goal to find out the best possible 
route to directly reach the destination as well as to minimize the flying time in the air. We believe 
that this research will give us a better understanding of this drone logistic application particularly 
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in the area of routing optimization and can be further implemented in the real situation as the 
natural disaster occurs.   

1.2 Objective 

1.) To study the application of drones in the aspect of supporting the relief operation team during 

the natural disaster period. 

2.) To compare the performance in term of speed and delivery time of traditional delivery and 

the proposed delivery using drones given the same circumstance. 

3.) To formulate and develop a mathematical model as well as a solution method to solve the 

routing problem.  

4.) To generate the case study of using drones to deliver relief supplies using the proposed model 

from the real data. 

5.) To conduct sensitivity analysis on different sets of parameters to obtain the optimal solutions 

on various settings.  

1.3 Benefits 
We believe that this research can benefit different stakeholders who are mainly involved 

with and manage the relief operation. First of all, our proposed model will show the potential 
benefits of using drones to make a delivery during a natural disaster event in which the food and 
relief are extremely important for the survivors. Unlike the other modes of transportation that 
mainly relies on the typical infrastructure to access the area e.g. road, rail, river,… etc., drones can 
fly across all types of terrains and can access different regions that are directly affected by the 
disasters. Secondly, our proposed routing model will demonstrate the best/optimal way for 
drones to reach the destinations which can significantly reduce the amount of traveling time and 
efficiently utilize the resources as well as minimize the operating cost. Lastly, with the right 
parameter tuning, we can apply this model with different case studies to reflect the performance 
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of our approach in a more realistic situation. Additionally, this work can be further studied for the 
actual implementation in the real situation. 

 
1.4 Scope of study 

Although drones were initially developed for defense operations (e.g., bombing, combat, 
surveillance, spying), they have a wide range of applications in numerous civilian and 
environmental fields, including transportation, infrastructure, disaster management, air quality 
monitoring, agriculture, media, healthcare, and others. In this study, our study primarily focus on 
the application of drones in logistics for disaster from the operational perspective enables drones 
to accomplish unique and specific missions for emergency and disaster response and for loss 
prevention and mitigation. Our model includes, but not limited to, the use of mathematical 
model, proof of concept and numerical experiments based on different techniques from 
operation research and computer science field. Please note that we do not cover the hardware 
and software capabilities and configurations of drones since they are not in our scope of interest.  
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Chapter 2 

Background and Related Work 
 

2.1 Background 
 In the last half-century, the world has been impacted by natural disasters that have killed 

and injured countless thousands and economically destroyed residential property and 

infrastructure. Typical natural disasters in different countries include floods, droughts, tropical 

storms, tsunamis, forest fires, landslides, earthquakes, hailstorms, etc. Many private and public 

organizations collaborate in mitigating such threats, monitoring disaster situations, responding and 

managing the situation, and providing assistance and relief in the immediate aftermath of a 

disaster. In this modern age, various technologies can help reduce the impact of natural disasters 

by presenting the opportunity to expedite and magnify the impact of humanitarian relief efforts 

through greater efficiency and responsiveness, reaching more people sooner, more cost-

effectively, and saving more lives.  

 Traditionally, the supply delivery during the natural disaster period was made by ground 

networks, massive regional distribution facilities, and fleets of vehicles which are only suitable for 

long-distance, intercity shipping [1]. The traditional truck is not well suited to delivery in areas 

where the road is damaged from natural disasters like flooding, earthquakes, landslides, etc. 

Because of this, transportation providers are developing a better solution to last-mile delivery by 

disrupting their long-standing traditional model and replacing it with a faster, more versatile, and 

more cost-efficient delivery system. In times of a pandemic, the last mile is also faced with an 

ever-increasing parcel ship volume that needs fast, cost-effective and ecologically friendly 

deliveries. The most prominent approach vividly discussed by practitioners and the academic 

literature to meet these requests is the delivery by autonomous drones, which either depart from 

a central depot or are launched from a delivery truck. Over the past few years, there has been a 
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recent discussion about using drones, robots,…, and autonomous vehicles to deliver products to 

the customer's doorstep in last-mile delivery [2]. Among various types of futuristic vehicles, drones 

have been recently tested in both academic research and practical aspect to perform such 

delivery in a specific region permitted by the regulator. Following the announcement of Amazon 

Prime Air in 2013, many well-known e-commerce companies and traditional logistics curriers like 

USPS, UPS and FedEx have been testing drone delivery services to deliver various items, including 

relief supplies, food, and commercial products [3, 4].     

 Drones have several advantages, including their speed, flexibility, and accessibility to areas 

where no other modes of transportation can reach. In addition, drones can carry supply kits such 

as food, water, and medicine during a natural disaster. A small delivery drone can weigh between 

0.5 to 3 lbs (250 to 1,300 grams) and deliver items writing between 5 and 30 kilograms (11 to 66 

lbs). On the contrary, a delivery truck/trailer usually weighs around 6 tons and has a payload 

capacity of around 15 tons to 35 tons. Therefore, when pairing a drone with a truck that can carry 

huge loads and travel long-range, this combination can offset the drone's disadvantages, such as 

its small capacity and short battery duration. The recent research focuses on synchronizing small 

drones with trucks to improve last-mile delivery performance. One of the very first models to 

include this function was introduced by Murray and Chu [5] as the "Flying Sidekick Traveling 

Salesman Problem" (FSTSP) in which a drone initially travels together with a truck, then departs 

from a truck to make a delivery and returns to a truck for a battery service. Simultaneously, a 

truck can travel to the following location without waiting for a drone.     

 In this paper, we propose a new routing model which includes the synchronization feature 

between multiple trucks and multiple drones and the capacities of both vehicles that were not 

previously presented in the FSTSP. We refer to this specific type of truck with the drone equipped 

on top as a "hybrid truck." In addition to that, we include two more types of vehicle fleets in the 

routing operation, including a "large drone" or "cargo drone" and a "traditional truck ."A large drone 

is a new "plane-sized" autonomous delivery vehicle that can weigh roughly over 200 lbs and can 
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carry heavy weight items up to hundreds of pounds. They can fly over long distances for hundreds 

of miles [6]. Large drones offer speed benefits similar to small drones with more endurance and 

capacity [7]. However, it comes with a high cost and has been recently tested in only a specific 

region.  

 Furthermore, unlike a small drone designed to carry a single item one at a time, a large 

drone can  carry many basic disaster supply kits such as food, water, and medicine. It can stop at 

multiple locations to deliver the kits before returning to the depot. Lastly, a traditional truck is 

simply a truck without a small drone and is used in the current delivery. Figures 2.1(a) and 1(b) 

illustrate the hybrid truck with a small drone and the large drone we discussed. 

 To the best of our knowledge, previous studies have yet to integrate and combine 

different types of vehicle fleets involving drones/large drones. Therefore, we intend to study and 

investigate the benefits of this approach in comparison with the other existing drone routing 

models used for last-mile delivery. We name this model "Integrated Vehicle Routing Problem with 

Drones" (I-VRPD). Figure 2.2 demonstrates a simple I-VRPD feasible solution in which three different 

types of vehicles are used in the setting. As illustrated, the solution routes consist of one hybrid 

truck with two drones, one traditional truck, and one large drone. The solid grey line represents 

the solution for the traditional truck, and the dashed line represents the solution for a large 

drone. 
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(a)               (b) 

Figure 2.1:Examples of a hybrid truck with a small drone and a large/cargo drone for delivery 

purposes. (a) A hybrid truck by Workhorse. (b) A large/cargo drone by Elroy 

 The I-VRPD solution contains the mix of different routes which can be categorized into 

three types: a hybrid truck route, a traditional truck route and a large drone route. The objective 

of the proposed model is to find a combination of solution routes from different fleets of vehicles 

that gives the minimum total delivery time while satisfying all demands from diaster victim. We 

believe that the successful integration of drones combining with other vehicle types could result 

in cost efficiency and reduce the delivery time performed by the operators. In this study, we 

formulate a new mathematical model to solve the Integrated Vehicle Routing Problem with 

Drones (I-VRPD).  
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Figure 2.2:Illustration of the Integrated Vehicle Routing Problem with Drones (I-VRPD) 
 
2.2 Related work 

The academic routing community has acknowledged the potential application of drones 
in industrial and commercial operations. There has been an increase in related work in drone 
routing optimization problems over the past few years literature which includes different 
classifications such as the objectives optimized, solution methods, applications, constraints, and 
the practical use in the industry perspective. Several recent survey articles on drone routing for 
last-mile delivery provide insights into general and emerging modeling approaches and outline 
trends and future research directions [8, 9, 10]. Most of the papers focus on the vehicle-drone 
integration routing for delivery which incorporates the use of truck and drone as a combined 
working unit. The Integrated Vehicle Routing Problem with Drones (I-VRPD) can be considered a 
variant of the classical Vehicle Routing Problem (VRP) with the implementation of small drones 
and large drones combined with other fleet types of vehicles. The Vehicle Routing Problem (VRP) 
is a well-known combinatorial optimization problem in the operation research field to minimize 
the travel cost of vehicles [11, 12, 13, 14]. We provide relevant papers on our work in this drone 
routing optimization area. 

Initially, FSTSP by Murray and Chu [5] highlighted the idea of synchronizing between a 
single truck and a single drone. The authors proposed a mathematical formulation and provided 
a simple heuristic to solve the solutions. Ponza [15] examined the FSTSP in detail and proposed 
a metaheuristic based on the simulated annealing technique to find reasonable solutions. Ha et 
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al. [16] modified the FSTSP objective to minimize the total cost of transportation and applied 
TSP-LS and a Greedy Randomized Adaptive Search Procedure (GRASP) to search for reasonable 
solutions. Jeong et al. [17] studied how the payload affected drone battery consumption and 
considered the operation in a prohibited area. In a recent study, Murray and Raj [18] introduced 
the "Multiple Flying Sidekicks Traveling Salesman Problem" (mFSTSP) by considering 
heterogeneous drones deployed from the truck or the depot. Kitjacharoenchai et al. [19] 
proposed the "Multiple Traveling Salesman Problem with Drones" (mTSPD), which has the same 
feature as FSTSP but considers multiple trucks and drones as well as allows drones to land at 
any available truck.  

Agatz et al. [20] proposed a similar problem to FSTSP called the "Traveling Salesman 
Problem with Drone" (TSP-D), which can be solved by the MIP model, the heuristics based on 
local search and dynamic programming. Bouman et al. [21] solved the TSP-D exactly using 
dynamic programming, while Yurek and Ozmutlu [22] solved the same problem with an iterative 
optimization algorithm. The TSP-D was further extended by Marinelli et al. [23] so that drones can 
be launched or land at any location in the network. Other drone routing problems based on TSP 
include the "Heterogeneous Delivery Problem" (HDP) by Mathew et al. [24], the "Traveling 
Salesman Problem with multiple Drones" (TSP-mD) by Tu et al. [25], the "TSP with a drone station" 
(TSP-DS) by Kim and Moon [26] and the "Truck-drone in Tandem Delivery Network" by Ferrandez 
et al. [27]. 

As for the drone routing problem extended from the VRP, we found many papers on the 
"Vehicle Routing Problem with Drones" (VRPD) in which the worst-case analyses and the upper 
bounds on the cost of deployment were developed [28, 29]. At the same time, others examined 
the VRPD by implementing "Continuous Approximation" (CA) models to determine the optimal 
sets of parameters, such as the number of vehicles, the total cost of operation, and the minimum 
completion time [30, 31]. Hong et al. [32] developed a heuristic to determine the optimal network 
of recharging locations of drones. Schermer et al. [33] also solved the VRPD with the MILP and 
the heuristic based on the "Variable Neighborhood Search" (VNS). Similarly, Dorling et al. [34] 
proposed the "Vehicle Routing Problems for Drone Delivery" with two objective functions: delivery 
costs and delivery time. Ham [35] additionally extended the dropping and pickup operations for 
drones in the "Parallel Drone Scheduling Traveling Salesman Problem" (PDSTSP) introduced by 
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Murray and Chu [5]. Other drone routing problems based on VRP include "Same-Day Delivery 
Routing Problems with Heterogeneous Fleets" (SDDPHF) by Ulmer and Thomas [36]. "Multi-Trip 
Drone Routing Problem" (MTDRP) by Cheng et al. [37]. Vehicle Routing Problem with Drones and 
Time Windows" (VRPDTW) by Pugliese and Guerriero [38] and "Vehicle Routing Problem with Drone 
Resupply" (VRPDR) by Dayarian et al. [39]. 

Considering problems in which drones are allowed to carry many packages and stop at 
multiple locations per launch, we found the following papers, including the "Two-Echelon 
cooperated Routing Problem for the Ground Vehicle (GV) and its carried unmanned aerial vehicle 
(UAV)" (2E-GU-RP) by Luo et al. [40]. the "Hybrid Vehicle-Drone Routing Problem" (HVDRP) by Karak 
and Abdelghany [41], the "Vehicle Routing Problem with Drones" (VRPD) by Wang and Sheu [42], 
the "k-Multi-visit Drone Routing Problem" (k-MVDRP) by Poikonen and Golden [43, 44], and lastly 
the "Two Echelon Vehicle Routing Problem with Drones" (2EVRPD) by Kitjacharoenchai et al. [45]. 

In the recent VRPD research, Zhu [46] investigated collaborative multi-truck–multi-drone 
delivery based on local takeoff and landing modes. Trucks were not involved in the problem of 
distribution by drones (DDP) and the carrier problem of drones (CVP-D). Salama and Srinivas [47] 
first relaxed the common assumption of restricting drone operations to customer locations by 
allowing the truck to stop at non-customer locations (referred to as flexible sites for drone) LRO. 
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Chapter 3  
Research Methodology 

 
3.1 Problem Definition 
         In general, the humanitarian supplies delivery problem focuses on making relief goods 
distribution operations such that supplies can be efficiently and quickly transported from 
distributing points to affected areas. The delivery problem is considered a critical operation in the 
Response phase as part of the Disaster Management Cycle diagram, as shown in Figure 3.1, which 
aims to save lives and minimize the immediate impacts of the disasters. Many studies have 
examined this problem by treating it as a vehicle routing problem with different objectives. Time 
is the most common objective in disaster relief, including the sum of travel times, the total delay 
cost, and the total response time.  

Figure 3.1: Supplies Delivery Problem as part of the Response Phase in the Disaster Management 
Cycle diagram 
 
 The I-VRPD is a combinatorial optimization problem that can be formulated by Mixed 
Integer Programming (MIP). The problem can be defined on a directed graph G=(V,E) in which V 
represents a set of n destination nodes with one depot and E represents the set of arcs in the 
graph. The new integrated system provides flexibility and options for clients to receive items from 
any vehicle fleet in which each type of fleet has its advantage. For example, while a traditional 
truck delivers packages with large volumes or loads to natural disaster victims who might be 



 

19 
 

located far from the depot, the hybrid truck with small drones can deliver items with small 
volumes or light loads to the victims who are located close to the depot. In addition, a large 
drone can carry multiple heavy items with more extended battery capacity than small drones, 
ideally an excellent fit for the disaster period, which requires faster delivery for large items. The 
benefits of this configuration could potentially reduce operational costs, improve overall delivery 
speed, and reduce the waiting times of the victims in the affected zones. 
 It is important to note that each vehicle fleet is operated independently, and all vehicle 
units are assumed to be homogenous. Each hybrid truck can only carry a limited amount of small 
drones. A small drone has single unit capacity while a large drone has its own certain capacity. 
Both hybrid truck and traditional truck have the same capacity and unlimited endurance. All small 
drones in the fleet have the same battery capacity and so do the large drones. The battery 
capacity will determine how long it can fly before receiving a service. We assume that small 
drones can only land at the destination locations (nodes) on the graph. This assumption applies 
to all other vehicle fleets as well. In addition, a small drone and a hybrid truck must wait for each 
other if one happens to arrive at the node first. Finally, whenever a small drone is launched from 
a hybrid truck, it must return to the same hybrid truck after finishing the delivery.  
  
3.2 Notation 
 Three vehicle fleet types are defined as a set of K = {1, 2, 3,…,k}, VT = {1,2,3,…,vt} and VD 
= {1,2,3,…,vd}, which represent a hybrid truck fleet, a traditional truck fleet, and a large drone 
fleet accordingly. They must carry a load less than their capacities (Q for a hybrid truck, QVT for 
a traditional truck, and QVD for a large drone). Each fleet type consists of a certain number of 
homogeneous vehicle units. Each unit of a hybrid truck is attached with a set of small drones, KD 
= {1, 2, 3,…,kd}, each can handle a load up to QD. The amount of load is measured by weight 
unit for all vehicles. In addition, the drone’s travel capability is restricted by its battery limitation, 

defined as 𝐵 for a small drone and BVD for a large drone. Let 𝐷𝑖  be a demand for each 
destination node i from 1,2,3,…,n. 

 Let 𝜏𝑖,𝑗
𝑇  be a truck travel time between node i and node j and similarly let 𝜏𝑖,𝑗

𝐷  be a 

drone travel time between node i and node j.  The I-VRPD is said to be symmetric if  𝜏𝑖,𝑗
𝑇 =
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  𝜏𝑗,𝑖
𝑇  and  𝜏𝑖,𝑗

𝐷 = 𝜏𝑗,𝑖
𝐷  and asymmetric otherwise. Based on the triangle inequality, the travel 

time for both truck and drone must satisfy 𝜏𝑖,𝑘
𝑇 + 𝜏𝑘,𝑗

𝑇 ≥  𝜏𝑖,𝑗
𝑇 ,  𝜏𝑖,𝑘

𝐷 + 𝜏𝑘,𝑗
𝐷 ≥  𝜏𝑖,𝑗

𝐷 . 

 For readability purposes, we define the set of destination nodes 𝐶 = {1,  2,  3, … , 𝑛} 

and a set 𝐶0 = {0(𝑠), 1, 2, 3, … , 𝑛} as the set of destination nodes plus a starting depot, 

and set 𝐶+ = {1, 2, 3, … , 0(𝑟)} as the set of destination nodes plus the returning depot. 

We define the following decision variables: Let 𝑥𝑖,𝑗
𝑘  = 1 if a hybrid truck k travels from a node 

i to a node j and 0 otherwise. Similarly, let 𝑥𝑣𝑡𝑖,𝑗
𝑣𝑡  and 𝑥𝑣𝑑𝑖,𝑗

𝑣𝑑  = 1 if a traditional truck vt and 

a large drone vd each from a node i to a node j and 0 otherwise. Let  𝑦𝑖,𝑗,𝑝
𝑘𝑑,𝑘  = 1 if a small drone 

kd of hybrid truck k travels from a node i to a node j and from a node j to a node p and 0 

otherwise. Additionally, we use variables 𝑦𝑡𝑖
𝑘 , 𝑦𝑣𝑡𝑖

𝑣𝑡 , 𝑦𝑣𝑑𝑖
𝑣𝑑 and 𝑦𝑑𝑖

𝑘𝑑,𝑘 to indicate 
whether a hybrid truck, a traditional truck, a large drone, and a small drone serve destination 
node i accordingly or not. 

 To track operational time, we denote the variable 𝑡𝑡𝑗
𝑘  as the arrival time of the hybrid 

truck k and 𝑑𝑡𝑗
𝑘𝑑,𝑘as the arrival time of the small drone kd of the hybrid truck k at node j. 𝑡𝑡𝑗

𝑘  

and 𝑑𝑡𝑗
𝑘𝑑,𝑘are are adjusted to be the same in any node j. The variables 𝑡𝑣𝑡𝑗

𝑣𝑡  and 

𝑡𝑣𝑡𝑗
𝑣𝑑 represent the traditional truck vt and large drone arrival time at node j ∈ 𝐶+ accordingly. 

Lastly, we define the variables 𝑢𝑖
𝑘  𝑢𝑖

𝑣𝑡 , 𝑢𝑖
𝑣𝑑  for the VRP sub-tour elimination constraints and 

the variable  𝑙𝑎𝑖
𝑘𝑑,𝑘for the launching and landing status of a small drone. 

 
The notations can be summarized as follows: 
Set 

 𝐶 = {1,  2,  3,  4,  5,  6, … , 𝑛}  represents the set of all customers 

 𝐶0 = {0(𝑠),  1,  2,  3,  4,  5, … , 𝑛}  represents the set of all customers including the depot 

 𝐶+ = {1,  2,  3,  4,  5, … , 𝑛, 0(𝑟)}  represents the set of all customers including the depot  

 𝑁 =  𝐶 ∪ 𝐶0 ∪ 𝐶+ represents all the nodes in the entire operation 

 K = {1,2,3,…,k} represents the set of all units of hybrid-trucks in the operation.  

 KD = {1,2,3,…,kd} represents the set of all units of small drones in each truck.  

 VT = {1,2,3,…,vt} represents the set of traditional trucks in the operation 
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 VD = {1,2,3,…,vd} represents the set of large drones in the operation 

 Parameters 

 𝜏𝑖,𝑗
𝑇 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎 𝑡𝑟𝑢𝑐𝑘 𝑡𝑜 𝑡𝑟𝑎𝑣𝑒𝑙 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑗 

 𝜏𝑖,𝑗
𝐷 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎 𝑑𝑟𝑜𝑛𝑒 𝑡𝑜 𝑡𝑟𝑎𝑣𝑒𝑙 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑗 

 𝑄 = 𝐻𝑦𝑏𝑟𝑖𝑑-𝑡𝑟𝑢𝑐𝑘𝑠 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑆𝑎𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ𝑦𝑏𝑟𝑖𝑑- 𝑡𝑟𝑢𝑐𝑘𝑠) 
 𝑄𝑑 = 𝑆𝑚𝑎𝑙𝑙 𝑑𝑟𝑜𝑛𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑆𝑎𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑚𝑎𝑙𝑙 𝑑𝑟𝑜𝑛𝑒𝑠) 
 𝑄𝑣𝑡 = 𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑆𝑎𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡𝑟𝑎𝑑𝑡𝑖𝑜𝑛𝑎𝑙  𝑡𝑟𝑢𝑐𝑘𝑠) 

 𝑄𝑣𝑑 = 𝐿𝑎𝑟𝑔𝑒 𝑑𝑟𝑜𝑛𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑆𝑎𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙𝑎𝑟𝑔𝑒 𝑑𝑟𝑜𝑛𝑒𝑠) 
 𝐵 =  𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑖𝑚𝑖𝑡 𝑓𝑜𝑟 𝑠𝑚𝑎𝑙𝑙 𝑑𝑟𝑜𝑛𝑒𝑠 (𝑆𝑚𝑎𝑙𝑙 𝑑𝑟𝑜𝑛𝑒′𝑠 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑖𝑓𝑒) 
 𝐵𝑉𝐷 =  𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑖𝑚𝑖𝑡 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑑𝑟𝑜𝑛𝑒𝑠 (𝐿𝑎𝑟𝑔𝑒 𝑑𝑟𝑜𝑛𝑒′𝑠 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑖𝑓𝑒) 
 𝐷𝑖 = 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑖  

Main Variables 
 𝑥𝑖,𝑗

𝑘 = {0,1} 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑎 ℎ𝑦𝑏𝑟𝑖𝑑 −

𝑡𝑟𝑢𝑐𝑘 𝑘 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑗 𝑜𝑟 𝑛𝑜𝑡 
 𝑥𝑣𝑡𝑖,𝑗

𝑣𝑡 =

{0,1} 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑎 𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑣𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑗 𝑜𝑟 𝑛𝑜𝑡 
 𝑥𝑣𝑑𝑖,𝑗

𝑣𝑑 =

{0,1} 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑎 𝑙𝑎𝑟𝑔𝑒 𝑑𝑟𝑜𝑛𝑒 𝑣𝑑 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑗 𝑜𝑟 𝑛𝑜𝑡 
 𝑦𝑖,𝑗,𝑝

𝑘𝑑,𝑘 =  

{0,1} 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑎 𝑑𝑟𝑜𝑛𝑒 𝑘𝑑 𝑜𝑓 𝑡𝑟𝑢𝑐𝑘 𝑘 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑗 𝑎𝑛𝑑  
𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑝 𝑜𝑟 𝑛𝑜𝑡 

 𝑇𝑡𝑖
𝑘 = 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡ℎ𝑎𝑡 𝑎 ℎ𝑦𝑏𝑟𝑖𝑑 𝑡𝑟𝑢𝑐𝑘 𝑘 𝑎𝑟𝑟𝑖𝑣𝑒𝑠 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑖 

 𝐷𝑡𝑖
𝑘𝑑,𝑘 = 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡ℎ𝑎𝑡 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑑𝑟𝑜𝑛𝑒 𝑘𝑑 𝑜𝑓 𝑡𝑟𝑢𝑐𝑘 𝑘 𝑎𝑟𝑟𝑖𝑣𝑒𝑠 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑖  

 𝑇𝑣𝑡𝑖
𝑣𝑡 = 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡ℎ𝑎𝑡 𝑎 𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑣𝑡 𝑎𝑟𝑟𝑖𝑣𝑒𝑠 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑖 

 𝑇𝑣𝑑𝑖
𝑣𝑑 = 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡ℎ𝑎𝑡 𝑎 𝑙𝑎𝑟𝑔𝑒 𝑑𝑟𝑜𝑛𝑒 𝑣𝑑 𝑎𝑟𝑟𝑖𝑣𝑒𝑠 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑖 

 𝑢𝑖
𝑘, 𝑢𝑖

𝑣𝑡, 𝑢𝑖
𝑣𝑑 = 𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑓𝑜𝑟 𝑠𝑢𝑏𝑡𝑜𝑢𝑟 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛  

 𝑙𝑎𝑖
𝑘𝑑,𝑘 = {0,1} 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑤ℎ𝑖𝑐ℎ 𝑐𝑎𝑛 𝑙𝑎𝑢𝑛𝑐ℎ 𝑎 𝑑𝑟𝑜𝑛𝑒  

(0 𝑚𝑒𝑎𝑛𝑠 𝑙𝑎𝑢𝑛𝑐ℎ𝑎𝑏𝑙𝑒 𝑠𝑡𝑎𝑡𝑒,  1 𝑚𝑒𝑎𝑛𝑠 𝑢𝑛𝑙𝑎𝑢𝑛𝑐ℎ𝑎𝑏𝑙𝑒 𝑠𝑡𝑎𝑡𝑒)  
 𝐵𝑐𝑖

𝑣𝑑 = 𝑇ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑖 𝑜𝑓 𝑎 𝑙𝑎𝑟𝑔𝑒 𝑑𝑟𝑜𝑛𝑒 𝑣𝑑 
 

3.3 The key part of the model 
 The optimization is separated into three parts: 1.) Decision variables, 2.) Objective function, 
and 3.) Sets of constraints. All variables used in this model are defined and described in Section 
2.2.1 in detail. As for the objective function, we want to minimize the total delivery time of all 
vehicle fleets, so the objective function's components include the delivery time of the traditional 
truck fleet, the delivery time of the hybrid truck fleet, and the delivery time of the large drone 
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fleet. As the total delivery time decreases, it will benefit natural disaster victims. They would be 
able to receive the supply kits such as food, water, and medicine at a faster speed which is part 
of the immediate actions to save lives and minimize impacts in the Response Phase of the Disaster 
Management Cycle diagram. Lastly, there are several sets of constraints that can be divided into 
different groups as follows: 
 - The set of constraints ensures that every customer is guaranteed to receive a package. 
 - Flow conservation and continuity for all trucks/large drones. 
 - Flow conservation and continuity for small drones in Hybrid trucks. 
 - Capacity constraints to ensure that each vehicle must be able to carry items within its 
capacity. 
 - Battery consumption constraints to make sure that drones must operate within their 
battery limit. 
 - Time adjustment constraints to keep track of the delivery time of all vehicles.  
 
3.4 Mathematical Formulation 
 We present the MIP formulation for I-VRPD as follows: 

Objective 

minimize ∑ 𝑡𝑡0(𝑟)
𝑘 + ∑ 𝑡𝑣𝑡0(𝑟)

𝑣𝑡 + ∑ 𝑡𝑣𝑑0(𝑟)
𝑣𝑑

𝑣𝑑∈𝑉𝐷   𝑣𝑡∈𝑉𝑇𝑘∈𝐾    (1)  

The objective function (1) minimizes the total arrival time of all vehicle units across different 

fleets at the depot. 

 Subject to    

∑ ∑ 𝑦𝑑𝑖
𝑘𝑑,𝑘

𝑘𝑑∈𝐾𝐷 +  ∑ 𝑦𝑡𝑖
𝑘

𝑘∈𝐾 + ∑ 𝑦𝑣𝑡𝑖
𝑣𝑡

𝑣𝑡∈𝑉𝑇 + ∑ 𝑦𝑣𝑑𝑖
𝑣𝑑

𝑣𝑑∈𝑉𝐷𝑘∈𝐾 = 1;  ∀𝑖 ∈ 𝐶         (2) 

 

Constraints (2) ensure that each destination is guaranteed to receive the package from one of 

the following vehicles: a hybrid truck, a small drone, a traditional truck, and a large drone 

exactly once. 

 ∑ 𝑥0(𝑠),𝑖
𝑘

𝑖∈𝐶+
= 1;  ∀𝑘 ∈ 𝐾                                       (3)              

∑ 𝑥𝑖,0(𝑟)
𝑘

𝑖∈𝐶0
= 1;  ∀𝑘 ∈ 𝐾                                           (4) 
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 ∑ 𝑥𝑖,𝑗
𝑘 = ∑ 𝑥𝑗,𝑖

𝑘
𝑗∈𝐶0

= 𝑦𝑡𝑖
𝑘;  ∀𝑖 ∈ 𝐶,   ∀𝑘 ∈ 𝐾𝑗∈𝐶+

             (5)  

 

Constraints (3), (4), and (5) maintain the flow conservation of the hybrid truck at the depot, 

(3)&(4), and each destination node i (5) by enforcing that the hybrid truck 𝑘 must leave the 

node whenever it enters the node.  

                            ∑ 𝑥𝑣𝑡0(𝑠),𝑖
𝑣𝑡

𝑖∈𝐶+
= 1;  ∀𝑣𝑡 ∈ 𝑉𝑇                                                                                                                         (6)    

                            ∑ 𝑥𝑣𝑡𝑖,0(𝑟)
𝑣𝑡

𝑖∈𝐶0
= 1;  ∀𝑣𝑡 ∈ 𝑉𝑇                                                                                                            (7) 

∑ 𝑥𝑣𝑡𝑖,𝑗
𝑣𝑡 = ∑ 𝑥𝑣𝑡𝑗,𝑖

𝑣𝑡
𝑗∈𝐶0

= 𝑦𝑣𝑡𝑖
𝑣𝑡;  ∀𝑖 ∈ 𝐶,   ∀𝑣𝑡 ∈ 𝑉𝑇𝑗∈𝐶+

                                                              (8) 

                     ∑ 𝑥𝑣𝑑0(𝑠),𝑖
𝑣𝑑

𝑖∈𝐶+
= 1;  ∀𝑣𝑑 ∈ 𝑉𝐷                                                                                                              (9)                          

                       ∑ 𝑥𝑣𝑑𝑖,0(𝑟)
𝑣𝑑

𝑖∈𝐶0
= 1;  ∀𝑣𝑑 ∈ 𝑉𝐷                                                                                                                          (10) 

∑ 𝑥𝑣𝑑𝑖,𝑗
𝑣𝑑 = ∑ 𝑥𝑣𝑑𝑗,𝑖

𝑣𝑑
𝑗∈𝐶0

= 𝑦𝑣𝑑𝑖
𝑣𝑑;  ∀𝑖 ∈ 𝐶,∀𝑣𝑑 ∈ 𝑉𝐷𝑗∈𝐶+

                                              (11)  

Similarly, the sets of constraints (6) to (8) and (9) to (11) impose the same restriction for a 

traditional truck and a large drone which ensures the flow conservation and guarantees the 

departure and arrival to the depot. 

∑ ∑ 𝑦𝑖,𝑗,𝑝
𝑘𝑑,𝑘

𝑝∈𝐶𝑖∈𝐶 = 𝑦𝑑𝑗
𝑘𝑑,𝑘;  ∀𝑗 ∈ 𝐶, ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾𝐷                            (12) 

 

Constraints (12) ensure that whenever a small drone travels from node i to node j and from 

node j to node p, it will reach a destination at node j.  

 ∑ ∑ ∑ ∑ 𝑦𝑖,𝑗,𝑝
𝑘𝑑,𝑘

𝑝 ∈𝐶𝑗 ∈𝐶𝑘∈𝐾𝑘𝑑∈𝐾𝐷 ≤ 1;  ∀𝑖 ∈ 𝐶                                                                                                                          (13)  

∑ ∑ ∑ ∑ 𝑦𝑝,𝑗,𝑖
𝑘𝑑,𝑘

𝑗 ∈𝐶𝑝 ∈𝐶𝑘∈𝐾 ≤ 1;  ∀𝑖 ∈ 𝐶𝑘𝑑∈𝐾𝐷                                                                                                                           (14)  

 

Constraints (13) and (14) enforce that, at most, one small drone must depart from and arrive at 

a hybrid truck at each stop. 
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 2𝑦𝑖,𝑗,𝑝
𝑘𝑑,𝑘 ≤ ∑ 𝑥ℎ,𝑖

𝑘
ℎ∈𝐶0
ℎ≠𝑖

+ ∑ 𝑥𝑙,𝑝
𝑘

𝑙∈𝐶
𝑙≠𝑝

; ∀𝑖, 𝑗, 𝑝 ∈  𝐶, ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾𝐷                                                                                  (15) 

Constraints (15) state that if a small drone departs from node i, delivers a package at node j, 

and lands at node p, then it is guaranteed that a hybrid truck would stop by at node i and node 

p. 

 

∑ ∑ ∑ ∑ 𝑦𝑖,𝑗,𝑝
𝑘𝑑,𝑘

𝑝 ∈𝐶𝑖 ∈𝐶𝑘∈𝐾  𝑘𝑑∈𝐾𝐷 ≤ 1 −           ∑ ∑ ∑ ∑ 𝑦𝑗,𝑎,𝑏
𝑘𝑑,𝑘

𝑏∈𝐶𝑎∈𝐶𝑘∈𝐾  ;  ∀𝑗 ∈  𝐶   𝑘𝑑∈𝐾𝐷                                              (16) 

∑ ∑ ∑ ∑ 𝑦𝑖,𝑗,𝑝
𝑘𝑑,𝑘

𝑝 ∈𝐶𝑖 ∈𝐶𝑘∈𝐾  𝑘𝑑∈𝐾𝐷 ≤ 1 −           ∑ ∑ ∑ ∑ 𝑦𝑎,𝑏,𝑗
𝑘𝑑,𝑘

𝑏∈𝐶𝑎∈𝐶𝑘∈𝐾  ;  ∀𝑗 ∈  𝐶   𝑘𝑑∈𝐾𝐷                                              (17) 

 

Constraints (16) and (17) ensure that no flow enters or leaves node j when a small drone make 

a delivery at node j accordingly.  The sets of constraints (18) to (25) consider the correctness of 

a small drone’s launching and landing operation. They track whether a particular drone has 

already been launched and ensure that it can never be relaunched before returning to the 

truck.    

𝑙𝑎𝑖
𝑘𝑑,𝑘(∑ ∑ 𝑦𝑝,𝑗,𝑖

𝑘𝑑,𝑘
𝑝∈𝐶𝑗∈𝐶 ) = 0; ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾𝐷                                                                                                  (18)  

𝑙𝑎𝑖
𝑘𝑑,𝑘(∑ ∑ 𝑦𝑖,𝑗,𝑝

𝑘𝑑,𝑘
𝑝∈𝐶𝑗∈𝐶 ) = 0; ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾𝐷                                                                                                  (19)  

Constraints (18) and (19) enforce that when 𝑙𝑎𝑖
𝑘𝑑,𝑘 = 1, a small drone can not enter or 

leave node i and vice versa. 

𝑙𝑎𝑗
𝑘𝑑,𝑘 ≥ 1 − 𝑀(2 − 𝑥𝑖,𝑗

𝑘 − ∑ ∑ 𝑦𝑖,𝑞,𝑝
𝑘𝑑,𝑘

𝑝∈𝐶𝑞∈𝐶 + 𝑙𝑎𝑖
𝑘𝑑,𝑘 +  ∑ ∑ 𝑦𝑎,𝑏,𝑗

𝑘𝑑,𝑘
𝑏∈𝐶𝑎∈𝐶 ); ∀𝑖, ∀𝑗 ∈ 𝐶,  ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈

𝐾𝐷    (20)        

𝑙𝑎𝑗
𝑘𝑑,𝑘 ≤ 1 + 𝑀(2 − 𝑥𝑖,𝑗

𝑘 − ∑ ∑ 𝑦𝑖,𝑞,𝑝
𝑘𝑑,𝑘

𝑝∈𝐶𝑞∈𝐶 + 𝑙𝑎𝑖
𝑘𝑑,𝑘 +   ∑ ∑ 𝑦𝑎,𝑏,𝑗

𝑘𝑑,𝑘
𝑏∈𝐶𝑎∈𝐶 ); ∀𝑖, ∀𝑗 ∈ 𝐶,  ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈

𝐾𝐷     (21) 

 

Constraints (20) and (21) state that as a truck travels from node i to node j, if a small drone is 

launched from node i and has not returned to node j then 𝑙𝑎𝑗
𝑘𝑑,𝑘must equal 1.  
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𝑙𝑎𝑗
𝑘𝑑,𝑘 ≥ 1 − 𝑀(2 − 𝑥𝑖,𝑗

𝑘 − 𝑙𝑎𝑖
𝑘𝑑,𝑘 + ∑ ∑ 𝑦𝑎,𝑏,𝑗

𝑘𝑑,𝑘
𝑏∈𝐶𝑎∈𝐶 ) ; ∀𝑖, ∀𝑗 ∈ 𝐶,  ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾𝐷         

       (22)  

𝑙𝑎𝑗
𝑘𝑑,𝑘 ≤ 1 + 𝑀(2 − 𝑥𝑖,𝑗

𝑘 − 𝑙𝑎𝑖
𝑘𝑑,𝑘 + ∑ ∑ 𝑦𝑎,𝑏,𝑗

𝑘𝑑,𝑘
𝑏∈𝐶𝑎∈𝐶 ) ; ∀𝑖, ∀𝑗 ∈ 𝐶,  ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾𝐷                

       (23)  

 

Similarly, constraints (22) and (23) state the situation where a small drone was previously 

launched (𝑙𝑎𝑖
𝑘𝑑,𝑘 = 1) and has not arrived at node j where the hybrid truck is scheduled to 

visit. If this is the case, then 𝑙𝑎𝑗
𝑘𝑑,𝑘must equal to 1.   

𝑙𝑎𝑗
𝑘𝑑,𝑘 ≥ −𝑀(2 − 𝑥𝑖,𝑗

𝑘 − ∑ ∑ 𝑦𝑎,𝑏,𝑗
𝑘𝑑,𝑘

𝑏∈𝐶𝑎∈𝐶 );  ∀𝑖, ∀𝑗 ∈ 𝐶,  ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾𝐷                                            (24)  

𝑙𝑎𝑗
𝑘𝑑,𝑘 ≤ +𝑀(2 − 𝑥𝑖,𝑗

𝑘 − ∑ ∑ 𝑦𝑎,𝑏,𝑗
𝑘𝑑,𝑘

𝑏∈𝐶𝑎∈𝐶 );  ∀𝑖, ∀𝑗 ∈ 𝐶,  ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾𝐷                                            (25)  

 

Constraints (24) to (25) state that if a small drone returns to node j where a hybrid truck k is 

scheduled to visit, then 𝑙𝑎𝑗
𝑘𝑑,𝑘must equal 0. 

𝐷𝑗 ≤ 𝑄𝑑 + 𝑀(1 − ∑ ∑ 𝑦𝑖,𝑗,𝑝
𝑘𝑑,𝑘

𝑝∈𝐶   𝑖∈𝐶 );  ∀𝑗 ∈ 𝐶,  ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾𝐷                            (26) 

Constraints (26) ensure that a small drone must always carry a load less than its capacity (QD). 

∑ 𝐷𝑖𝑖∈𝐶 (𝑦𝑡𝑖
𝑘) + ∑ ∑ 𝐷𝑖(𝑦𝑑𝑖

𝑘𝑑,𝑘) ≤ 𝑄; ∀𝑘 ∈ 𝐾𝑘𝑑∈𝐾𝐷                                                                                                       𝑖∈𝐶 (27)     

 

Constraints (27) restrict that a hybrid truck must always carry the combined loads of both hybrid 

truck and small drone less than its capacity in any given time. 

∑ 𝐷𝑖𝑖∈𝐶 (𝑦𝑣𝑡𝑖
𝑣𝑡) ≤ 𝑄𝑉𝑇; ∀𝑣𝑡 ∈ 𝑉𝑇                                                                                                                        (28) 

∑ 𝐷𝑖𝑖∈𝐶 (𝑦𝑣𝑑𝑖
𝑣𝑑) ≤ 𝑄𝑉𝐷; ∀𝑣𝑑 ∈ 𝑉𝐷                                                                                                                   (29) 
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Constraints (28) and (29) address a similar condition as in (27) by ensuring that each traditional 

truck vt must carry the load less and its capacity, and so does the large drone. 

The sets of constraints (30) – (32) deal with the battery consumption of drones.  

𝜏𝑖,𝑗
𝐷  +  𝜏𝑗,𝑝

𝐷 ≤ 𝐵 + 𝑀(1 − ∑ ∑ 𝑦𝑖,𝑗,𝑝
𝑘𝑑,𝑘

𝑝∈𝐶   𝑖∈𝐶 );  ∀𝑗 ∈ 𝐶, ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾                                               (30)  

 

Constraints (30) address that when a small drone departs from node i, visit node j and return to 

node p, it must have enough battery to cover the entire flight which must be less its battery 

capacity 𝐵. 

𝑏𝑐𝑗
𝑣𝑑 ≥ 𝑏𝑐𝑖

𝑣𝑑 + 𝜏𝑖,𝑗
𝐷 − 𝑀(1 − 𝑥𝑣𝑑𝑖,𝑗

𝑣𝑑);  ∀𝑖 ∈ 𝐶0, ∀𝑗 ∈ 𝐶+, ∀𝑣𝑑 ∈ 𝑉𝐷                                      (31) 

𝑏𝑐𝑖
𝑣𝑑  ≤ BVD                        (32) 

 

Similarly, constraints (31) and (32) ensure that the large drone must have enough battery at any 

point by limiting the battery consumption to less than the battery capacity. 

∑ 𝑦𝑖,𝑗
𝑘𝑑,𝑘

𝑗∈𝐶 (𝑡𝑡𝑖
𝑘 − 𝑑𝑡𝑖

𝑘𝑑,𝑘) = 0;  ∀𝑖 ∈ 𝐶0, ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾𝐷                                                 (33) 

∑ 𝑦𝑗,𝑖
𝑘𝑑,𝑘

𝑗∈𝐶 (𝑡𝑡𝑖
𝑘 − 𝑑𝑡𝑖

𝑘𝑑,𝑘) = 0;  ∀𝑖 ∈ 𝐶, ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾𝐷                                       (34) 

 

At node i, where both vehicles merge, constraints (33) enforce the departure time of both small 

drone and hybrid truck to be the same, while constraints (34) enforce the arrival time to be the 

same for both vehicles. 

    

𝑡𝑡𝑗
𝑘 ≥ 𝑡𝑡𝑖

𝑘 + 𝜏𝑖,𝑗
𝑇 − 𝑀(1 − 𝑥𝑖,𝑗

𝑘 ); ∀𝑖 ∈ 𝐶0, ∀𝑗 ∈ 𝐶+, ∀𝑘 ∈ 𝐾                                                                           (35)  

𝑡𝑣𝑡𝑗
𝑣𝑡 ≥ 𝑡𝑣𝑡𝑖

𝑣𝑡 + 𝜏𝑖,𝑗
𝑇 − 𝑀(1 − 𝑥𝑣𝑡𝑖,𝑗

𝑣𝑡); ∀𝑖 ∈ 𝐶0, ∀𝑗 ∈                      𝐶+, ∀𝑣𝑡 ∈ 𝑉𝑇                                      (36)  

𝑑𝑡𝑝
𝑘𝑑,𝑘 ≥ 𝑑𝑡𝑖

𝑘𝑑,𝑘 + 𝜏𝑖,𝑗
𝐷 + 𝜏𝑗,𝑝

𝐷 − 𝑀(1 − 𝑦𝑖,𝑗,𝑝
𝑘𝑑,𝑘); ∀𝑖, ∀𝑗, ∀𝑝 ∈ 𝐶, ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾𝐷                                (37) 
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𝑡𝑣𝑑𝑗
𝑣𝑑 ≥ 𝑡𝑣𝑑𝑖

𝑣𝑑 + 𝜏𝑖,𝑗
𝐷 − 𝑀(1 − 𝑥𝑣𝑑𝑖,𝑗

𝑣𝑑); ∀𝑖 ∈ 𝐶0, ∀𝑗 ∈  𝐶+, ∀𝑣𝑑 ∈ 𝑉𝐷                                                 (38)  

 

Constraints (35), (36), (37), and (38) update the arrival time of the hybrid truck, traditional truck, small drone, and large drone accordingly whenever the 

vehicles travel from one node to another node. 

𝑢𝑖
𝑘 − 𝑢𝑗

𝑘 + 𝑄(𝑥𝑖,𝑗
𝑘 ) ≤Q– 𝐷𝑗;  ∀𝑖, ∀𝑗 ∈ 𝐶 ∪ 𝐶0 ∪                                                                      𝐶+, ∀𝑘 ∈ 𝐾   (39)         

    𝐷𝑖 ≤ 𝑢𝑖
𝑘 ≤ Q ;  ∀𝑖, ∀𝑗 ∈ 𝐶 ∪ 𝐶0 ∪ 𝐶+, ∀𝑘 ∈ 𝐾         (40) 

𝑢𝑖
𝑣𝑡 − 𝑢𝑗

𝑣𝑡 + 𝑄𝑣𝑡(𝑥𝑣𝑡𝑖,𝑗
𝑣𝑡) ≤ Qvt − 𝐷𝑗;  ∀𝑖 ∈ 𝑁, ∀𝑗 ∈                                                                  𝑁, ∀𝑣𝑡 ∈ 𝑉𝑇         

(41) 

         𝐷𝑖 ≤ 𝑢𝑖
𝑣𝑡 ≤ Q𝑣𝑡 ;  ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁, ∀𝑣𝑡 ∈ 𝑉           (42) 

𝑢𝑖
𝑣𝑑 − 𝑢𝑗

𝑣𝑑 + 𝑄𝑣𝑑(𝑥𝑣𝑑𝑖,𝑗
𝑣𝑑) ≤Qvd −𝐷𝑗;  ∀𝑖 ∈ 𝑁, ∀𝑗 ∈                                                                𝑁, ∀𝑣𝑑 ∈ 𝑉𝐷         

(43) 

       𝐷𝑖 ≤ 𝑢𝑖
𝑣𝑑 ≤ Qvd ;  ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁, ∀𝑣𝑑 ∈ 𝑉𝐷      (44) 

 

Pairs of constraints (39)-(40), (41)-(42), and (43)-(44)  ensure that there is no sub-tour in all tours 

of the hybrid truck fleet, traditional truck fleet, and large drone fleet accordingly [48]. 

𝑥𝑖,𝑗
𝑘 ,  𝑦𝑖,𝑗,𝑝

𝑘𝑑,𝑘, 𝑥𝑣𝑡𝑖,𝑗
𝑣𝑡 , 𝑥𝑣𝑑𝑖,𝑗

𝑣𝑑 , 𝑦𝑡𝑖
𝑘 , 𝑦𝑑𝑖

𝑘𝑑,𝑘 , 𝑦𝑣𝑡𝑖
𝑣𝑡 , 𝑦𝑣𝑑𝑖

𝑣𝑑 , 𝑙𝑎𝑖
𝑘𝑑,𝑘 ∈ {0,1}, 

𝑡𝑡𝑗
𝑘 , 𝑑𝑡𝑗

𝑘𝑑,𝑘 , 𝑏𝑐𝑖
𝑣𝑑,  𝑡𝑣𝑡𝑗

𝑣𝑡 , 𝑡𝑣𝑑𝑗
𝑣𝑑 ≥ 0, ∀𝑖, ∀𝑗, ∀𝑝 ∈ 𝐶, ∀𝑘 ∈ 𝐾, ∀𝑘𝑑 ∈ 𝐾𝐷, , ∀𝑣𝑡 ∈ 𝑉𝑇, ∀𝑣𝑑 ∈ 𝑉𝐷   (45)     

Lastly, we specify the types and ranges of the variables in constraints (45). The M value must be 

large enough,  and we can use the delivery time of the traditional trucks by solving the CVRP.       

 Since the I-VRPD is considered a generalization of the classical VRP, which is proven to be 

an NP-hard problem, the I-VRPD is, by nature, an NP-hard problem. Therefore, to test the 

proposed model's performance as part of the strategic operation in disaster response, we have 

designed a different set of experiments to verify the model and correspondingly compare its 

solution with different routing models from the previous studies. 
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Chapter 4 

Results 
 In this section, we ran different experiments to find out the solution of the I-VRPD on 
various sets of instances. Beginning with a case study conducted in Lafayette Indiana, we want to 
get the visualization of the solution routes when integrating different fleet types of vehicle 
together. This experiment would give us a much clearer picture of how this work can benefit the 
last-mile delivery service in the real-world setting. In the second and third experiments, we solved 
the small-size benchmark problems with the MIP formation from Section 3 and observe the 
delivery time among different sets of vehicle fleets. We additionally compare the results of the 
I-VRPD with other results of the relevant routing models from the literature. These experiments 
demonstrate the potential gain from implementing the combined fleets vs. a single fleet type. 

For all experiments, we assume  𝜏𝑗,𝑖
𝑇  = 1.5 𝜏𝑖,𝑗

𝐷 based on Brar et al. [49]. Other assumptions still 
hold valid from Sections 2-1. All experiments were conducted, and the MIP formulation was 
solved by CPLEX on GAMS 23.51.   
 
4.1 Case Study 

 In this section, we conduct a case study using the real In this section, we conduct a case 

study using a real-world scenario to investigate the usefulness of the I-VRPD model in the practical 

aspect and compare different solution routes under various settings. First, we randomly select 

eight destination nodes and one depot node in Lafayette/West Lafayette area. For this particular 

experiment, all trucks are assumed to travel in the road network while the drones travel in the 

air space in Euclidean space. Other assumptions are still the same as we indicated earlier in the 

paper. Finally, we ran the MIP from Section 3 in the solver and generated different solution routes, 

as shown in Figure 4.1. 
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        (a)                (b) 

               

 

 

 

    

       (c)                (d) 

Figure 4.1:Result of the case study. (a) Single Traditional truck (Delivery time: 2046 S.). (b) 

Single Hybrid truck (Delivery time: 1369 S.). (c) One Hybrid truck & One Traditional truck (Delivery 

time: 1070 S.). (d) One Hybrid truck, One Traditional truck &One Large (Delivery time: 671 S.). 

 Figure 4.1(a) represents the solution route using a traditional truck alone which is the 

typical way of delivery, and Figure 4.1(b) represents the solution route using a hybrid truck with 

one small drone. The gain from using a drone in the model accounts for a 33% improvement in 

delivery time. If one traditional truck is added to the operation, as shown in Figure 4.1(c), it will 
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reduce the delivery time by 21.8%. Lastly, combining a large drone, a hybrid truck, and a 

traditional truck in operation (Figure 4.1(d)) shows a significant reduction in delivery time by 67% 

from the traditional truck alone. The case study demonstrates the potential benefit of integrating 

different types of vehicles in last-mile delivery and illustrates the feasible solution route from the 

real-world scenario.       

4.2 Experiment with VRP Benchmark 
 In this experiment, we tested our proposed I-VRPD model with the modified CVRP 
benchmark instances from Augerat et al. (1995) [50, 51]. We used samples of the classical A, B, 
and P CVRP sets from Augerat et al. (1995). The complete sets have 27, 23, and 23 instances, 
accordingly, ranging from 31 to 100 customers. The problem sizes and demand distributions are 
similar, but the customers in sets A, and P are uniformly distributed and in B clustered. For each 
instance, we ran the model by adjusting the type and the number of vehicles starting from a 
traditional truck to a whole combination of a hybrid truck, a traditional truck, and a large drone. 
For simplicity, we assume that all vehicles travel in Euclidean space. All experiment runs use the 
same set of settings and assumptions, as stated in Section 3. Finally, we set the objective as the 
makespan of delivery time and showed the results of the experiment in Figure 4.2 and Figure 4.3. 
  

 
 
 
 
 
 
 
 
 

Figure 4.2:Result of testing the model with the benchmark using different combinations of 
vehicles 
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The results suggest combining different vehicle types can significantly reduce the total delivery 
time in all tested instances. It can be seen from the chart that using the regular truck or traditional 
truck returns the longest delivery time among different types of vehicle operations. On the 
contrary, combining all types of vehicles to make delivery returns the shortest delivery time 
suitably works best when time is the most critical factor, like during the disaster relief period. 
Looking at the line graph in Figure 4.3, we can see that the slope is steep at the beginning and 
begins to stay flat as more resources are added to the operation. This finding shows that adding 
a hybrid truck equipped with a drone can make a substantial impact while adding a large drone 
might be less effective in this small-size problem. One explanation is that only a few customers 
are located on the map and can be served simply with one or two vehicles. Thus, adding a large 
vehicle may not improve solution performance significantly. 
 

 
Figure 4.3:Average delivery time reduction among various settings 

 
4.3 Comparison of I-VRPD MIP and other MIP routing models 
 This section compares the solution between the proposed I-VRPD and other routing 
models, including VRPD, which utilizes small drones in a hybrid truck, and CVRP on different small-
size benchmark instances. We obtained the exact solutions for both I-VRPD and CVRP using the 
CPLEX. This experiment aims to evaluate the cost (time) saving when combining different fleets 
of vehicles to make delivery. We also want to get an estimation of how long the solver would 
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take to return an optimal solution for I-VRPD. For each instance, we set the number of destination 
nodes to eight and the maximum number of vehicles to two. The CVRP model consists of only 
traditional trucks, while the VRPD model consists of the only hybrid truck in which each unit is 
equipped with one small drone [52]. Exactly one hybrid truck with a small drone and one large 
drone are used in the I-VRPD. The results are shown in Table 4.1. 
Table 4.1.   Comparison of the results between MIP I-VRPD, MIP VRPD and MIP CVRP on small-
size instance 

Instance 

MIP CPLEX Improvement (%) 

I-VRPD 

 

VRPD 

 

CVRP  

Objective 
Runtime 

(Second) 
 Objective 

Runtime 

(Second)  Objective 
Runtime 

(Second) 

I-VRPD v.s. 

VRPD 

I-VRPD v.s. 

CVRP 

A1-n8-k2 253 623.13 

 

300 2196.09  338 88.72 15.67 25.15 

A2-n8-k2 218 455.85 

 

248 2788.66  305 75.30 12.10 28.52 

A3-n8-k2 159 382.53 

 

185 1471.09  204 95.86 14.05 22.06 

B1-n8-k2 259 653.64 

 

287 2231.58  340 76.11 9.76 23.82 

B2-n8-k2 201 609.42  248 1964.14  252 64.66 18.95 20.24 

P1-n8-k2 108 256.87 

 

120 1038.87  140 40.86 10.00 22.86 

P2-n8-k2 113 177.37   126 1325.49   148 36.83 10.32 23.65 

Average     451.26 
    

1859.41 
    

68.33 12.98 23.76 
        

 

 When comparing I-VRPD to VRPD in column "I-VRPD v.s. VRPD," the results show an 

improvement in objective value approximately by 12.98% (9.76% (min) to 18.95% (max)) 

depending on the instance. The objective improvement is much more significant when compared 

to CVRP in the column "I-VRPD v.s. CVRP," with an average improvement of 23.76% (20.24% (min) 

to 28.52% (max)). The results from this experiment demonstrate the gain from implementing the 

new routing model when using all heterogeneous fleet vehicles in the setting. In addition, the 

MIP takes significant time to generate the optimal solutions even for the small-size problem 
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(451.26 seconds for I-VRPD, 1859.41 for VRPD, and 68.33 for CVRP). Numerical analysis shows that 

substantial savings in delivery completion time (13% on average in v.s. VRPD case and 25% on 

average instances in v.s. CVRP case) can be achieved by using a large drone together with a hybrid 

truck-drone vehicle for all instances. Our findings also led to several practical insights into using 

combinations of different types of delivery vehicles. 

 Based on the experiments, the small-size instances can be optimally solved by the MIP 

formulation run on CPLEX shown in Section 4.1. Then, we present different routing scenarios in 

the case study to visually demonstrate the implementation of the I-VRPD in the real-world aspect. 

Section 4.2 tests our proposed MIP model with some well-known VRP benchmark instances and 

compares the delivery time using different vehicle type combinations. The result shows that the 

scenario combining three different delivery vehicles returns the shortest delivery time. Lastly, we 

compare the I-VRPD and other routing models using the same amount of resources in Section 

4.3, which shows significant savings in delivery time. 
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Chapter 5 
Summary and Suggestions 

 
5.1 Summary 
 In this study, we present a new routing model, the Integrated Vehicle Routing Problems 
with Drones (I-VRPD), combining three routing operations: Traditional truck routing, Hybrid truck 
routing, and Large drone routing for humanitarian relief delivery. The I-VRPD is considered an 
extension of the traditional VRP with heterogeneous trucks and drones in which the hybrid truck 
is equipped with small drones. The study results have shown the benefit of integrating different 
vehicle fleet types as the delivery time can be reduced significantly, which is quite an essential 
part of the response phase in disaster management. 
 
5.2 Suggestions 
 The limitations of this work include 1.) the restriction of a drone with just a payload limit 
of one parcel per sortie and 2.) the longer computational time of the proposed model as the 
number of destination nodes as well as the number of delivery vehicles increase. The latter 
problem can be resolved by developing an efficient heuristic polynomial time algorithm. For 
future work, we can consider different fleets of vehicles or various modes of operation, including 
electric bikes, scooters, and droids. We can also reformulate the MIP formulation to strengthen 
the computational performance of the mathematical models using valid inequalities. From an 
algorithmic perspective, designing other metaheuristic algorithms could effectively solve the I-
VRPD problem with a better objective value and lower computational time. 
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Chapter 6 
Output 

 This research under the paper named “Integration of three vehicle fleet types for 
delivering relief supplies during a natural disaster” was accepted to be published in Applied 
Science and Engineering Progress (ASEP) (E-ISSN: 2673-0421), Volume 17, 2023. 
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รายงานทางการเงิน 

รายละเอียดงบประมาณการวิจัย จ าแนกดังนี้ 

หมวดเงิน เงินที่ตั้งไว้ (บาท) ค่าใช้จ่ายจริง (บาท) 

งบบุคลากร 

- หัวหน้าโครงการวิจัย (ไม่เกินร้อยละ 10 

ของงบประมาณโครงการ) 

- ค่าจ้างชั่วคราวเหมาจ่ายรายเดือนผู้ช่วย

นักวิจัยระดับปริญญาตรี อัตรา 18,000 x 

5 เดือน  

 

15,000.00 

 

90,000.00 

 

15,000.00 

 

90,000.00 

ค่าใช้จ่ายในการด าเนนิงาน 

- ค่าใช้จ่ายในการ Run Model 

- ค่าใช้จ่ายในการสืบค้นและรวบรวม

ข้อมูลและศึกษาวิจัย 

- ค่ายานพาหนะ 

 

31,800.00 

 

4,200.00 

5,000.00 

 

31,800.00 

 

4,200.00 

5,000.00 

ค่าวัสดุ 

- ค่าตีพิมพ์ 

 

4,000.00 

 

4,000.00 

รวมทั้งหมด 150,000.00 150,000.00 
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